
CUHK&SIAT Submission
for THUMOS15 Action
Recognition Challenge

Limin Wang, Zhe Wang, Yuanjun Xiong, Yu Qiao
The Chinese University of Hong Kong

Shenzhen Institutes of Advanced Technology, CAS

Outline

• Introduction

• Our method

• Experiments

• Conclusions

Introduction
• Previous research works focus on short cropped clips.

• From last layer, THUMOS challenge change to
temporal untrimmed videos.

• It becomes more challenging and we need to
consider both segmentation and classification at the
same time.

• For action recognition, there are mainly two types of
methods.

Related Works

• The first type of action recognition method:

• Low-level features: STIPs, Cuboids, Dense
Trajectories, Improved Trajectories.

• BoVW representations: Histogram encoding,
Sparse Encoding, VLAD, Fisher Vector.

Related Works

• The second type of action recognition method:

• Training deep neural networks on action
recognition in an end-to-end manner.

• Typical examples: 3D CNN, Two-Stream
ConvNets

Related Works
• Trajectory-pooled Deep-Convolutional Descriptors(TDD)

• Combination of Improved Trajectories and Two-
Stream ConvNets.

• Replace HOG, HOF, MBH descriptors with
convolutional activations of CNNs.

• Fisher vector meeting CNN features.

• However, due to our late start for this challenge, we
did not have the chance to try TDD on this.

Overview of TDD
+

Extracting Trajectories Extracting Feature Maps

Trajectory-Pooled Deep-Convolutional Descriptors (TDDs)

input video tracking in a single scale trajectories spatial & temporal nets frame & flow pyramidfeature pyramid

…

…

convolutional feature map feature map normalization trajectory-constrained pooling

T
D

D

X

Y

Z

spatiotemporal normalization channel normalization

…

…

+

+

+

Figure 2. Pipeline of TDD. The whole process of extracting TDD is composed of three steps: (i) extracting trajectories, (ii) extracting multi-
scale convolutional feature maps, and (iii) calculating TDD. We effectively exploit two available state-of-the-art video representations,
namely improved trajectories and two-stream ConvNets. Grounded on them, we conduct trajectory-constrained sampling and pooling over
convolutional feature maps to obtain trajectory-pooled deep convolutional descriptors.

achieved great success in image based tasks [14, 25, 28, 41]
and there have been a number of attempts to develop
deep architectures for video action recognition [9, 12, 24,
29]. Taylor et al. [29] used Gated Restricted Boltzmann
Machines (GRBMs) to learn the motion features in an
unsupervised manner and then resorted to convolutional
learning to fine tune the parameters. Ji et al. [9] extended
2D ConvNet to video domain for action recognition on
relatively small datasets, and recently Karpathy et al. [12]
tested ConvNets with deep structures on a large dataset,
called Sports-1M. However, these deep models achieved
lower performance compared with shallow hand-crafted
representation [31], which might be ascribed to two facts:
firstly, available action datasets are relatively small for
deep learning; secondly, learning complex motion patterns
is more challenging. Simonyan et al. [24] designed
two-stream ConvNets containing spatial and temporal net
by exploiting large ImageNet dataset for pre-training and
explicitly calculating optical flow for capturing motion
information, and finally it matched the state-of-the-art
performance.

However, these deep models lacked considerations of
temporal characteristics of video data and relied on large
training datasets. We incorporate video temporal char-
acteristics into deep architectures by using strategy of
trajectory-constrained sampling and pooling, and propose
a new descriptor. Meanwhile, our descriptors can be easily
adapted to the datasets of smaller size.

3. Improved Trajectories Revisited
As shown in Figure 2, our proposed representation

(TDD) is based on low level trajectory extraction and we

choose improved trajectories [31]. In this section, we briefly
review the extraction process of improved trajectories. It is
worth noting that our TDD is independent of the method
of extracting trajectories, and we use improved trajectories
due to its good performance.

Improved trajectories are extended from dense trajecto-
ries [30]. To compute dense trajectories, the first step is to
densely sample a set of points on 8 spatial scales on a grid
with step size of 5 pixels. Points in homogeneous areas are
eliminated by setting a threshold for the smaller eigenvalue
of their autocorrelation matrices. Then these sampled points
are tracked by media filtering of dense flow field.

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)|(xt,yt), (1)

where M is the median filter kernel, ∗ is convolutional
operation, ωt = (ut, vt) is the dense optical flow field of the
tth frame, and (xt, yt) is the rounded position of (xt, yt).
To avoid the drifting problem of tracking, the maximum
length of trajectory is set as 15-frame. Finally, those static
trajectories are removed as they lack motion information,
and other trajectories with suddenly large displacement are
also ignored, since they are obviously incorrect due to
inaccurate optical flow.

Improved trajectories boost the recognition performance
of dense trajectories by taking camera motion into account.
It assumes that the background motion of two consecutive
frames can be characterized by a homography matrix. To
estimate the homography matrix, the first step is to find
the correspondence between two consecutive frames. They
resort to SURF [2] feature matching and optical flow
based matching, as these two kinds of matching scheme
are complementary to each other. Then, they use the

Action Recognition with Trajectory-Pooled
Deep-Convolutional Descriptors

Limin Wang1,2 Yu Qiao2 Xiaoou Tang1,2
1Department of Information Engineering, The Chinese University of Hong Kong

2Shenzhen Institutes of Advanced Technology, CAS, China

Introduction
Trajectory extraction Trajectory pooling Fisher vectorInput video

Input video

H
an

d-
C

ra
ft

ed
D

ee
p-

L
ea

rn
ed

HOG HOF MBH

Pooling LayerConvolution Layer ... Prediction

...

Figure 1: Two types of features in action recognition.

•Goal: Design new features sharing merits of both hand-crafted and
deep-learned features for video representation.

•Existing works:
! Improved trajectories [1]: (i) Extracting trajectories. (ii) Pooling local features
along trajectories (HOG, HOF, MBH).

!Two-stream ConvNets [2]: (i) Stacking frames or optical flow fields. (ii)
Learning features for classification with CNNs.

•Our idea: Trajectory-Pooled Deep-Convolutional Descriptors (TDD):
! (i) we exploit deep architectures to learn discriminative convolutional feature maps.
! (ii) we perform trajectory-constrained pooling to aggregate these convolutional
feature maps into effective descriptors.

•Advantages:
! TDDs are automatically learned and contain high discriminative capacity compared
with those hand-crafted features;

! TDDs take account of the intrinsic characteristics of temporal dimension and
introduce the strategies of trajectory-constrained sampling and pooling.

Improved Trajectories Revisited
• Improved trajectories:

!Densely sampling a set of points and tracking them by media filtering:
Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)|(xt,yt)

!Camera motion estimation: determining a homography matrix by using SURF
feature matching and optical flow matching.

!Camera motion estimation is capable of rectifying the optical flow fileds and
removing the trajectories of background.

• iDTs for TDDs
!Given a video V, we obtain a set of trajectories: T(V) = {T1,T2, · · · ,TK}
! Tk denotes the kth trajectory in the original spatial scale:

Tk = {(xk1, yk1, zk1), (xk2, yk2, zk2), · · · , (xkP, ykP, zkP)}
!where (xkp, ykp, zkp) is the pixel position, and P is the length of trajectory (P = 15).

Deep Convolutional Descriptors

+

Extracting Trajectories Extracting Feature Maps

Trajectory-Pooled Deep-Convolutional Descriptors (TDDs)

input video tracking in a single scale trajectories spatial & temporal nets frame & flow pyramidfeature pyramid

…

…

convolutional feature map feature map normalization trajectory-constrained pooling

T
D

D

X

Y

Z

spatiotemporal normalization channel normalization

…

…

+

+

+

Figure 2: TDD extraction pipeline.

Layer conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 full6 full7 full8
size 7× 7 3× 3 5× 5 3× 3 3× 3 3× 3 3× 3 3× 3 - - -
stride 2 2 2 2 1 1 1 2 - - -
channel 96 96 256 256 512 512 512 512 4096 2048 101

map size ratio 1/2 1/4 1/8 1/16 1/16 1/16 1/16 1/32 - - -
receptive field 7× 7 11× 11 27× 27 43× 43 75× 75 107× 107 139× 139 171× 171 - - -

Table 1: ConvNet Architectures.
•Convolutional networks:

!We choose the two-stream ConvNets, which is composed of spatial nets and
temporal nets.

!Spatial nets capture static appearance cues and are trained on single frame
images (224× 224× 3),

! Temporal nets describe the dynamic motion information and are trained on the
stacking of optical flow fields (224× 224× 20).

•Convolutional feature maps:
!We use two-stream ConvNets as generic feature extractors:

C(V) = {Cs1,Cs2, · · · ,CsM,Ct1,Ct2, · · · ,CtM},
where Csm ∈ RHm×Wm×L×Nm is the mth feature map.

!We conduct zero padding of the layer’s input with size ⌊k/2⌋ before each
convolutional or pooling layer, with kernel size k.

!A point with video coordinates (xp, yp, zp) will be centered on (r× xp, r× yp, zp) in
convolutional map, where r is map size ratio.

•Trajectory-pooled descriptors:
! Two normalization methods:

! Spatiotemporal normalization: C̃st(x, y, z, n) = C(x, y, z, n)/maxVnst.
! Channel normalization: C̃ch(x, y, z, n) = C(x, y, z, n)/maxVx,y,zch .

!Sum pooling along trajectory:

D(Tk, C̃am) =
P∑

p=1

C̃am((rm × xkp), (rm × ykp), zkp)

!Multi-scale TDD extension: we construct multi-scale pyramid representations of
video frames and optical flow fields, which are transformed into multi-scale
convolutional feature maps by ConvNets.

Experimental Results

(a)RGB (b)Flow-x (c)Flow-y (d)S-conv4 (e)S-conv5 (f) T-conv3 (g)T-conv4
Figure 3: Examples of video frames, optical flow fields, and feature maps.

Spatial ConvNets Temporal ConvNets
Convolutional layer conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5
Recognition accuracy 24.1% 33.9% 41.9% 48.5% 47.2% 39.2% 50.7% 54.5% 51.2% 46.1%
Table 2: The performance of different layers of spatial nets and temporal nets.

32 64 128 256
0.38

0.4

0.42

0.44

0.46

0.48

PCA Dimension

A
cc

ur
ac

y

No Norm.Cha. Norm.ST. Norm. Combine
0.44

0.45

0.46

0.47

0.48

0.49

Normalizaiton Method

A
cc

ur
ac

y

Figure 4: Left: Performance trend with varying PCA reduced dimension. Right:
Comparison of different normalization methods.

Algorithm HMDB51 UCF101 Algorithm HMDB51 UCF101
HOG [1] 40.2% 72.4% Spatial conv4 48.5% 81.9%
HOF [1] 48.9% 76.0% Spatial conv5 47.2% 80.9%
MBH [1] 52.1% 80.8% Spatial conv4 and conv5 50.0% 82.8%
HOF+MBH [1] 54.7% 82.2% Temporal conv3 54.5% 81.7%
iDT [1] 57.2% 84.7% Temporal conv4 51.2% 80.1%
Spatial net [2] 40.5% 73.0% Temporal conv3 and conv4 54.9% 82.2%
Temporal net [2] 54.6% 83.7% TDD 63.2% 90.3%
Two-stream ConvNets [2] 59.4% 88.0% TDD and iDT 65.9% 91.5%

Table 3: Comparison of TDD with iDT features [1] and two-stream ConvNets [2].
HMDB51 UCF101

STIP+BoVW 23.0% STIP+BoVW 43.9%
Motionlets 42.1% Deep Net 63.3%
DT+BoVW 46.6% DT+VLAD 79.9%
DT+MVSV 55.9% DT+MVSV 83.5%
iDT+FV 57.2% iDT+FV 85.9%
iDT+HSV 61.1% iDT+HSV 87.9%
Two Stream 59.4% Two Stream 88.0%
TDD+FV 63.2% TDD+FV 90.3%
Our best result 65.9% Our best result 91.5%

Table 4: Comparison of TDDs to the state of the art.
Model and code is available at http://wanglimin.github.io/tdd/index.html

References
1. H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
2. K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.

Limin Wang, Yu Qiao, and Xiaoou Tang IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015

Code and model is available at https://wanglimin.github.io/tdd.html

https://wanglimin.github.io/tdd.html

Overview of Our Method

• Action Recognition on Temporal Untrimmed Videos:

• Step1: Temporal segmentation videos into clips.

• Step2: Classification of each clip.

• Step3: Obtaining the score of video from clip
scores

Step1: Temporal
Segmentation

• We first calculate the color histogram for each
frame.

• We evaluate the difference over the color
histograms of consecutive frames.

• If the difference is larger than a threshold, a shot
boundary will be detected.

• Post-processing: clips of less than 20 frames will
be eliminated

Step2: Classification of Clip

• For each clip, we try two kinds of classification
methods:

• We try very-deep two-stream ConvNets

• We use the traditional of IDTs+FV.

Network ArchitecturesNetwork architectures

(CUHK&SIAT) ChaLearn LAP: Cultural Event Recognition June 7, 2015 9 / 20

AlexNet, Clarifai, OverFeat GoogLeNet VGGNet
deep networks very-deep networks

Very-deep Two-stream
ConvNets

• We aim to explore the effect of depth of network on
action recognition.

• For spatial nets, we try three architectures: Clarifai
net, GoogLeNet, VGG Net (16-layer)

• Due to smaller training dataset (13,320 clips), we
pre-train these nets on ImageNet dataset.

Very-deep Two-stream
ConvNets

• For temporal net, we also try three different
architectures: Clarifai net, GoogLeNet, VGGNet (11-
layer).

• We train these nets from scratch on the UCF101
datasets.

• To avoid over-fitting problem, we use strong dropout for
fully-connected layers.

• For two-stream ConvNets, we just average the
prediction scores of spatial nets and temporal nets.

iDT Features and Fisher
Vector

• For hand-crafted representations, we use iDT features
with HOG, HOF, MBHx, MBHy descriptors.

• For each descriptors, we choose Fisher vector to
aggregate them into a high-dimensional representation.

• We first employ PCA and whiten pre-processing to de-
correlate and reduce dimension by a factor of 2.

• We then train a Gaussian Mixture Model (256 mixtures)
to Fisher vector representation.

Classifier
• For action recognition, we use linear SVM as

classifiers.

• For the fusion of multiple descriptors, we
concatenate the Fisher vector representation of
them before SVM training.

• For multi-class problem, we resort to the one-vs-all
training settings.

Fusion of ConvNets and
Linear SVM

• We fuse the prediction results of two-stream
ConvNets and linear SVM.

• Before fusion, we use linear transformation to
normalize the range of SVM score in [0,1].

Step 3: Recognition for
Untrimmed Video

• We have obtained recognition scores for each clip,
we design a hybrid pooling method to aggregate
clip scores into video score.

• For each class, if the maximum of clip scores is
larger than a threshold, then we will choose max-
pooling over these scores.

• Otherwise, we will use the average pooling over
these scores.

Experiments—
Implementation Details

• We train the two-stream ConvNets and linear SVMs
on the UCF101 dataset (13,320 clips)

• For spatial nets (fine-tuning), the initial learning rate
is set to 0.01 and decreased to 0.001 after 10k
iterations, and stop at 20k iterations.

• For temporal nets (from scratch), the initial learning
rate is set to 0.01, decreased to 0.001 after 50k, to
0.0001 after 70k, training stop at 90k iterations.

Experiment Results 1

• We first report the performance of spatial nets on
the validation dataset of THUMOS15.

• We notice that deeper architectures achieve higher
performance.

Spatial nets Temporal nets
ClarifaiNet GoogLeNet VGGNet (16-layer) ClarifaiNet GoogLeNet VGGNet (11-layer)

42.3% 53.7% 54.5% 47.0% 39.9% 42.6%

Table 1. Different network architectures and their performance on the THUMOS15 validation dataset.

able at the websites 1 2. For temporal nets. we choose to
stacking 10-frame optical flow fields and train the network
from the scratch on the UCF101 dataset. The detail about
the training of our very deep two-stream ConvNets is the
same with our previous work [15].

2.2. iDT features and Fisher vector representation
Low level features such as improved trajectories [11]

have yielded good performance on the task of action recog-
nition. We also exploit the improved trajectory features and
extract four kinds of local descriptors, namely HOG, HOF,
MBHx and MBHy. We then employ Fisher vector to en-
code these descriptors of a video clip into high dimensional
representation as its effectiveness for action recognition has
been verified in previous works [9, 17]. In order to train
GMMs, we first de-correlate TDD with PCA and reduce its
dimension to D by a factor of 2. Then, we train a GMM
with K (K = 256) mixtures, and finally the video is rep-
resented with a 2KD-dimensional vector. For multi-class
classification, we train a linear SVM in a one-vs-all training
scheme.

2.3. Video segmentation and classification
In order to perform action recognition in temporal

untrimmed videos, we follow our previous method [14] and
first temporally divide continuous videos into short clips.
Different from previous method, we design a simple yet ef-
fective method to detect shot boundary by computing the
color histogram and motion histogram. A shot will be de-
tected if the color histogram changes larger than a threshold
or the average motion magnitude is larger than a threshold.

For each clip, we employ two-stream ConvNets and
SVMs to perform action recognition separately. Finally, we
use the score-level fusion to combine the recognition result-
s from ConvNets and SVMs. The final score for the whole
video is obtained by averaging over these shot video clips.

3. Experiments
We train our model on the dataset of UCF101 and present

our results on the validation dataset of THUMOS15. The
experimental results of two-stream ConvNets with different
architectures are listed in Table 1. We see that the very-
deep networks (i.e. GoogLeNet and VGGNet) obtain better

1http://www.robots.ox.ac.uk/˜vgg/software/deep_eval/
2https://github.com/BVLC/caffe/wiki/Model-Zoo

Two-stream iDTs+FV Combine
63.7% 52.8% 68.1%

Table 2. The performance of two-stream ConvNets and iDTs+FV
on the THUMOS15 validation dataset.

performance than the deep network (i.e. ClarifaiNet) for
spatial nets. However, for temporal nets, very deep archi-
tectures achieve lower recognition performance than deep
ones. We analyze that the temporal nets are trained from
scratch and the UCF101 dataset is not enough to train such
deep architectures.

We also report the performance of two-stream ConvNet-
s, iDT features with Fisher vector, and their combination on
the THUMOS15 validation dataset in Table 2. From these
results, we observe that there is a significant improvement
for two-stream ConvNets over traditional iDT features with
Fisher vector (around 10%). To our best knowledge, this the
first time that deep learning methods significantly outperfor-
m the traditional low-level representations. These better re-
sults may be ascribed to the more deeper network architec-
tures. We combine the recognition scores from both meth-
ods, and find that it is capable of further boosting recogni-
tion performance by around 5%.

4. Conclusions
This paper has proposed a new action recognition

method from temporal untrimmed videos, by combining
two-stream ConvNets and Fisher vector representation of
iDT features. The results show that two-stream ConvNet-
s significantly outperform traditional iDT features and the
fusion of them is able to further boost the recognition per-
formance.

Acknowledgement
This work is supported by a donation of Tesla K40 G-

PU from NVIDIA corporation. Limin Wang and Yuan-
jun Xiong are supported by Hong Kong PhD Fellow-
ship. Yu Qiao is supported by National Natural Science
Foundation of China (91320101, 61472410), Shenzhen
Basic Research Program (JCYJ20120903092050890, J-
CYJ20120617114614438, JCYJ20130402113127496), 100
Talents Program of CAS, and Guangdong Innovative Re-
search Team Program (No.201001D0104648280).

2

Experiment Results 2

• We second investigate the performance temporal nets
on the validation datasets.

• We notice that deeper architectures yet perform worse.

Spatial nets Temporal nets
ClarifaiNet GoogLeNet VGGNet (16-layer) ClarifaiNet GoogLeNet VGGNet (11-layer)

42.3% 53.7% 54.5% 47.0% 39.9% 42.6%

Table 1. Different network architectures and their performance on the THUMOS15 validation dataset.

able at the websites 1 2. For temporal nets. we choose to
stacking 10-frame optical flow fields and train the network
from the scratch on the UCF101 dataset. The detail about
the training of our very deep two-stream ConvNets is the
same with our previous work [15].

2.2. iDT features and Fisher vector representation
Low level features such as improved trajectories [11]

have yielded good performance on the task of action recog-
nition. We also exploit the improved trajectory features and
extract four kinds of local descriptors, namely HOG, HOF,
MBHx and MBHy. We then employ Fisher vector to en-
code these descriptors of a video clip into high dimensional
representation as its effectiveness for action recognition has
been verified in previous works [9, 17]. In order to train
GMMs, we first de-correlate TDD with PCA and reduce its
dimension to D by a factor of 2. Then, we train a GMM
with K (K = 256) mixtures, and finally the video is rep-
resented with a 2KD-dimensional vector. For multi-class
classification, we train a linear SVM in a one-vs-all training
scheme.

2.3. Video segmentation and classification
In order to perform action recognition in temporal

untrimmed videos, we follow our previous method [14] and
first temporally divide continuous videos into short clips.
Different from previous method, we design a simple yet ef-
fective method to detect shot boundary by computing the
color histogram and motion histogram. A shot will be de-
tected if the color histogram changes larger than a threshold
or the average motion magnitude is larger than a threshold.

For each clip, we employ two-stream ConvNets and
SVMs to perform action recognition separately. Finally, we
use the score-level fusion to combine the recognition result-
s from ConvNets and SVMs. The final score for the whole
video is obtained by averaging over these shot video clips.

3. Experiments
We train our model on the dataset of UCF101 and present

our results on the validation dataset of THUMOS15. The
experimental results of two-stream ConvNets with different
architectures are listed in Table 1. We see that the very-
deep networks (i.e. GoogLeNet and VGGNet) obtain better

1http://www.robots.ox.ac.uk/˜vgg/software/deep_eval/
2https://github.com/BVLC/caffe/wiki/Model-Zoo

Two-stream iDTs+FV Combine
63.7% 52.8% 68.1%

Table 2. The performance of two-stream ConvNets and iDTs+FV
on the THUMOS15 validation dataset.

performance than the deep network (i.e. ClarifaiNet) for
spatial nets. However, for temporal nets, very deep archi-
tectures achieve lower recognition performance than deep
ones. We analyze that the temporal nets are trained from
scratch and the UCF101 dataset is not enough to train such
deep architectures.

We also report the performance of two-stream ConvNet-
s, iDT features with Fisher vector, and their combination on
the THUMOS15 validation dataset in Table 2. From these
results, we observe that there is a significant improvement
for two-stream ConvNets over traditional iDT features with
Fisher vector (around 10%). To our best knowledge, this the
first time that deep learning methods significantly outperfor-
m the traditional low-level representations. These better re-
sults may be ascribed to the more deeper network architec-
tures. We combine the recognition scores from both meth-
ods, and find that it is capable of further boosting recogni-
tion performance by around 5%.

4. Conclusions
This paper has proposed a new action recognition

method from temporal untrimmed videos, by combining
two-stream ConvNets and Fisher vector representation of
iDT features. The results show that two-stream ConvNet-
s significantly outperform traditional iDT features and the
fusion of them is able to further boost the recognition per-
formance.

Acknowledgement
This work is supported by a donation of Tesla K40 G-

PU from NVIDIA corporation. Limin Wang and Yuan-
jun Xiong are supported by Hong Kong PhD Fellow-
ship. Yu Qiao is supported by National Natural Science
Foundation of China (91320101, 61472410), Shenzhen
Basic Research Program (JCYJ20120903092050890, J-
CYJ20120617114614438, JCYJ20130402113127496), 100
Talents Program of CAS, and Guangdong Innovative Re-
search Team Program (No.201001D0104648280).

2

Experiment Results 3

• Finally, we compare the performance of very-deep ConvNets and iDT
features on the validation dataset.

• For spatial nets, we choose the architectures of VGGNet and GoogLeNet.

• For temporal nets, we choose the architecture of Clarifai net.

Spatial nets Temporal nets
ClarifaiNet GoogLeNet VGGNet (16-layer) ClarifaiNet GoogLeNet VGGNet (11-layer)

42.3% 53.7% 54.5% 47.0% 39.9% 42.6%

Table 1. Different network architectures and their performance on the THUMOS15 validation dataset.

able at the websites 1 2. For temporal nets. we choose to
stacking 10-frame optical flow fields and train the network
from the scratch on the UCF101 dataset. The detail about
the training of our very deep two-stream ConvNets is the
same with our previous work [15].

2.2. iDT features and Fisher vector representation
Low level features such as improved trajectories [11]

have yielded good performance on the task of action recog-
nition. We also exploit the improved trajectory features and
extract four kinds of local descriptors, namely HOG, HOF,
MBHx and MBHy. We then employ Fisher vector to en-
code these descriptors of a video clip into high dimensional
representation as its effectiveness for action recognition has
been verified in previous works [9, 17]. In order to train
GMMs, we first de-correlate TDD with PCA and reduce its
dimension to D by a factor of 2. Then, we train a GMM
with K (K = 256) mixtures, and finally the video is rep-
resented with a 2KD-dimensional vector. For multi-class
classification, we train a linear SVM in a one-vs-all training
scheme.

2.3. Video segmentation and classification
In order to perform action recognition in temporal

untrimmed videos, we follow our previous method [14] and
first temporally divide continuous videos into short clips.
Different from previous method, we design a simple yet ef-
fective method to detect shot boundary by computing the
color histogram and motion histogram. A shot will be de-
tected if the color histogram changes larger than a threshold
or the average motion magnitude is larger than a threshold.

For each clip, we employ two-stream ConvNets and
SVMs to perform action recognition separately. Finally, we
use the score-level fusion to combine the recognition result-
s from ConvNets and SVMs. The final score for the whole
video is obtained by averaging over these shot video clips.

3. Experiments
We train our model on the dataset of UCF101 and present

our results on the validation dataset of THUMOS15. The
experimental results of two-stream ConvNets with different
architectures are listed in Table 1. We see that the very-
deep networks (i.e. GoogLeNet and VGGNet) obtain better

1http://www.robots.ox.ac.uk/˜vgg/software/deep_eval/
2https://github.com/BVLC/caffe/wiki/Model-Zoo

Two-stream iDTs+FV Combine
63.7% 52.8% 68.1%

Table 2. The performance of two-stream ConvNets and iDTs+FV
on the THUMOS15 validation dataset.

performance than the deep network (i.e. ClarifaiNet) for
spatial nets. However, for temporal nets, very deep archi-
tectures achieve lower recognition performance than deep
ones. We analyze that the temporal nets are trained from
scratch and the UCF101 dataset is not enough to train such
deep architectures.

We also report the performance of two-stream ConvNet-
s, iDT features with Fisher vector, and their combination on
the THUMOS15 validation dataset in Table 2. From these
results, we observe that there is a significant improvement
for two-stream ConvNets over traditional iDT features with
Fisher vector (around 10%). To our best knowledge, this the
first time that deep learning methods significantly outperfor-
m the traditional low-level representations. These better re-
sults may be ascribed to the more deeper network architec-
tures. We combine the recognition scores from both meth-
ods, and find that it is capable of further boosting recogni-
tion performance by around 5%.

4. Conclusions
This paper has proposed a new action recognition

method from temporal untrimmed videos, by combining
two-stream ConvNets and Fisher vector representation of
iDT features. The results show that two-stream ConvNet-
s significantly outperform traditional iDT features and the
fusion of them is able to further boost the recognition per-
formance.

Acknowledgement
This work is supported by a donation of Tesla K40 G-

PU from NVIDIA corporation. Limin Wang and Yuan-
jun Xiong are supported by Hong Kong PhD Fellow-
ship. Yu Qiao is supported by National Natural Science
Foundation of China (91320101, 61472410), Shenzhen
Basic Research Program (JCYJ20120903092050890, J-
CYJ20120617114614438, JCYJ20130402113127496), 100
Talents Program of CAS, and Guangdong Innovative Re-
search Team Program (No.201001D0104648280).

2

1: training only on UCF101
2: training on both UCF101 and THUMOS15 validation data

Results on testing dataset

0

17.5

35

52.5

70

Two-stream (1) Two-stream + iDT (1) Two-stream + iDT (2)

Conclusions
• In this submission, we mainly explore very-deep two-

stream ConvNets for action recognition.

• For spatial nets, deeper architectures perform better.

• For temporal nets, deeper architecture did not obtain
better performance, perhaps due to the smaller
training datasets.

• For first time, two-stream ConvNets significantly
outperform iDT+FV representation.

What’s Next

• Apply TDD features on top of current system.

• Explore the background training data for action
recognition.

• Incorporate audio information.

Get TDD at https://wanglimin.github.io/tdd.html

https://wanglimin.github.io/tdd.html

