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This article describes an interpretation of our Gradient Vector G with respect to
Fisher Vector, as well as the technical details for the EM algorithm of M-PCCA.

1 Gradient Vector G vs Fisher Vector

In this section, we show that, compared to Fisher Vector, our Gradient Vector represen-
tation encodes only information private to  and y. Thus our representation, a concate-
nation of gradient vector G and latent vector Z, incorporate less redundant information
compared to Fisher Vector representation. Here we only discuss gradient vector with
respect to x. Interpretation for y can be similarly obtained. Note that {\IJ’;}szl are all
constrained to be diagonal. We reserve the derivatives in a matrix form only for the
sake of notation convenience.

In Gaussian mixture model for v = (z,y), the gradient of the model likelihood
with respect to z is
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The resulting Fisher Vector representation is
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Compared with the formulas used in [2], the above representations are exactly the same
except for a constant coefficient, which is cancelled out in our intra-normalization. Let
Z; 1, denote
Tik = i — Wyzin “

We rewrite the gradient vector G of x for comparison.
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where z; , = z; — szlk This originates from our model and assumption on z, y
and z as their shared information, where

x=Wyz+ g + €z, (7
y=Wyz+ py + €. ®)
For each submodel &, denote
Ty =z — Whzy, ©)
I =y~ Wy (10)

T, and ¥ can be considered to be variables encoding information private to = and y
individually in each submodel, with Z; j, and y; 5, being their samples. Var(Z}) and
Var(yy,) are then \TJ’; and \T!’;, respectively. Our gradient vector representation is thus
different from Fisher Vector only in that we subtract the shared part between x and
y in every component, before aggregating descriptors. The resulting Fisher Vector
representation is
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2 Derivation of the EM algorithm for M-PCCA

Assume we have a set of training data D = {v;}, v; = (x;, y;). In this section, we dis-
cuss how to use EM algorithm to estimate parameters © = {wy,, W, W?f, uk, ,u’;, vk \I!’y“}
for M-PCCA. The likelihood function we need to maximize is defined by

L(©;D) = Zlog {Z wkp(vilk)} . (12)
: %

M-PCCA model includes two types of latent variables, Z = {z; ;} and T’ = {~; .}
In the E-step, we update Z = {z; .} and I" = {~; 1, } by calculating their posterior dis-
tributions given old M-PCCA model parameters ©. +; ; has a 0-1 posterior distribution,
where v; ;, = 1 indicates that sample data v; is generated by the k-th submodel. Given
an M-PCCA model, the expectation ; ;, = 1 is given by,

Yik = E(vik)
= p(klvi).

2; . has a Guassian posterior distribution N (2; 1, ¥4%), given by
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Following the notations in our paper, we have
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The mean and covariance matrix of z; j, can then be estimated by
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In the M-step, we use the estimations of those latent variables to optimize ©. To
begin with, we introduce the complete-data log-likelihood as in [1]
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Denote z; j, and y; by
Tip =i — Whzp, (24)
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Then we have
log p(vi, zi k|k) =log p(|2i i, k) + log (i 2.k, k) + log p(2i k| k)
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Given hidden parameters Z and I', we need to maximize the expectation of the com-
plete data log likelihood E(L) with respect to ©,
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We use Lagrange method to optimize the above problem, as in [3]

max B(L) + A(%: wy — 1),

where A is Lagrange multiplier. Then we have the final result
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In particular, the most relevant part to those used in our paper can be written as
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Denote U* — WrSEWET by Wk The corresponding gradient vectors for z: are thus

3E(£) k 1{ k > k@k}

= 2w (¥ — = 42
OE(L) _ Ll ) Gk Zz %‘,k(fi,k - Mf;)@zk - M];)T kL
g — oo {34 - e e

Similarly, gradient vectors for y are
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