Supplementary Material for Paper ID 2012

November 8, 2013

This article describes an interpretation of our Gradient Vector \mathcal{G} with respect to Fisher Vector, as well as the technical details for the EM algorithm of M-PCCA.

1 Gradient Vector \mathcal{G} vs Fisher Vector

In this section, we show that, compared to Fisher Vector, our Gradient Vector representation encodes only information private to x and y. Thus our representation, a concatenation of gradient vector $\mathcal G$ and latent vector $\mathcal Z$, incorporate less redundant information compared to Fisher Vector representation. Here we only discuss gradient vector with respect to x. Interpretation for y can be similarly obtained. Note that $\{\Psi_x^k\}_{k=1}^K$ are all constrained to be diagonal. We reserve the derivatives in a matrix form only for the sake of notation convenience.

In Gaussian mixture model for v=(x,y), the gradient of the model likelihood with respect to x is

$$\frac{\partial E(\mathcal{L}_{Gauss})}{\partial \mu_x^k} = 2w_k (\Psi_x^k)^{-1} \left\{ \mu_x^k - \frac{\sum_i \gamma_{i,k} x_i}{\sum_i \hat{\gamma}_{i,k}} \right\},\tag{1}$$

$$\frac{\partial E(\mathcal{L}_{Gauss})}{\partial \Psi_x^k} = w_k (\Psi_x^k)^{-1} \left\{ \Psi_x^k - \frac{\sum_i \gamma_{i,k} (x_i - \mu_x^k) (x_i - \mu_x^k)^\top}{\sum_i \hat{\gamma}_{i,k}} \right\} (\Psi_x^k)^{-1}. \quad (2)$$

The resulting Fisher Vector representation is

$$\left\{ \frac{\partial E(\mathcal{L}_{Gauss})}{\partial \mu_x^k}, \frac{\partial E(\mathcal{L}_{Gauss})}{\partial \Psi_x^k}, \frac{\partial E(\mathcal{L}_{Gauss})}{\partial \mu_y^k}, \frac{\partial E(\mathcal{L}_{Gauss})}{\partial \Psi_y^k} \right\}$$
(3)

Compared with the formulas used in [2], the above representations are exactly the same except for a constant coefficient, which is cancelled out in our intra-normalization. Let $\widetilde{x}_{i,k}$ denote

$$\widetilde{x}_{i,k} = x_i - W_x^k z_{i,k}. (4)$$

We rewrite the gradient vector \mathcal{G} of x for comparison.

$$\frac{\partial E(\mathcal{L}_{\mathcal{CCA}})}{\partial \mu_x^k} = 2w_k (\Psi_x^k)^{-1} \left\{ \mu_x^k - \frac{\sum_i \gamma_{i,k} \widetilde{x}_{i,k}}{\sum_i \hat{\gamma}_{i,k}} \right\},\tag{5}$$

$$\frac{\partial E(\mathcal{L}_{\mathcal{CCA}})}{\partial \Psi_x^k} = w_k (\Psi_x^k)^{-1} \left\{ \widetilde{\Psi}_x^k - \frac{\sum_i \gamma_{i,k} (\widetilde{x}_{i,k} - \mu_x^k) (\widetilde{x}_{i,k} - \mu_x^k)^\top}{\sum_i \widehat{\gamma}_{i,k}} \right\} (\Psi_x^k)^{-1}. \quad (6)$$

where $\tilde{x}_{i,k} = x_i - W_x^k z_{i,k}$. This originates from our model and assumption on x, y and z as their shared information, where

$$x = W_x z + \mu_x + \epsilon_x,\tag{7}$$

$$y = W_y z + \mu_y + \epsilon_y. \tag{8}$$

For each submodel k, denote

$$\widetilde{x}_k = x - W_x^k z_k, \tag{9}$$

$$\widetilde{y}_k = y - W_y^k z_k. \tag{10}$$

 \widetilde{x}_k and \widetilde{y}_k can be considered to be variables encoding information private to x and y individually in each submodel, with $\widetilde{x}_{i,k}$ and $\widetilde{y}_{i,k}$ being their samples. $\mathrm{Var}(\widetilde{x}_k)$ and $\mathrm{Var}(\widetilde{y}_k)$ are then $\widetilde{\Psi}_x^k$ and $\widetilde{\Psi}_y^k$, respectively. Our gradient vector representation is thus different from Fisher Vector only in that we subtract the shared part between x and y in every component, before aggregating descriptors. The resulting Fisher Vector representation is

$$\left\{ \frac{\partial E(\mathcal{L}_{CCA})}{\partial \mu_x^k}, \frac{\partial E(\mathcal{L}_{CCA})}{\partial \Psi_x^k}, \frac{\partial E(\mathcal{L}_{CCA})}{\partial \mu_y^k}, \frac{\partial E(\mathcal{L}_{CCA})}{\partial \Psi_y^k} \right\}$$
(11)

2 Derivation of the EM algorithm for M-PCCA

Assume we have a set of training data $D=\{v_i\}$, $v_i=(x_i,y_i)$. In this section, we discuss how to use EM algorithm to estimate parameters $\Theta=\{w_k,W_x^k,W_y^k,\mu_x^k,\mu_y^k,\Psi_x^k,\Psi_y^k\}$ for M-PCCA. The likelihood function we need to maximize is defined by

$$\mathcal{L}(\Theta; D) = \sum_{i} \log \left\{ \sum_{k} w_{k} p(v_{i}|k) \right\}. \tag{12}$$

M-PCCA model includes two types of latent variables, $Z=\{z_{i,k}\}$ and $\Gamma=\{\gamma_{i,k}\}$. In the **E-step**, we update $Z=\{z_{i,k}\}$ and $\Gamma=\{\gamma_{i,k}\}$ by calculating their posterior distributions given old M-PCCA model parameters Θ . $\gamma_{i,k}$ has a 0-1 posterior distribution, where $\gamma_{i,k}=1$ indicates that sample data v_i is generated by the k-th submodel. Given an M-PCCA model, the expectation $\gamma_{i,k}=1$ is given by,

$$\hat{\gamma}_{i,k} = E(\gamma_{i,k})$$

$$= p(k|v_i).$$
(13)

 $z_{i,k}$ has a Guassian posterior distribution $\mathcal{N}(\hat{z}_{i,k}, \Sigma_z^{i,k})$, given by

$$p(z_{i,k}|v_{i},k) = p(z_{i,k}|x_{i}, y_{i}, k)$$

$$= \frac{p(x_{i}, y_{i}|z_{i,k}, k)p(z_{i,k})}{p(x_{i}, y_{i}|k)}$$

$$= \frac{p(x_{i}|z_{i,k}, k)p(y_{i}|z_{i,k}, k)p(z_{i,k})}{p(x_{i}, y_{i}|k)}.$$
(14)

Following the notations in our paper, we have

$$p(x_i|z_{i,k}, k) = \mathcal{N}(x_i - W_x^k z_{i,k} | \mu_x^k, \Psi_x^k), \tag{15}$$

$$p(y_i|z_{i,k}, k) = \mathcal{N}(y_i - W_y^k z_{i,k} | \mu_y^k, \Psi_y^k), \tag{16}$$

$$p(z_{i,k}|k) = \mathcal{N}(z_{i,k}|0,I).$$
 (17)

The mean and covariance matrix of $z_{i,k}$ can then be estimated by

$$\hat{z}_{i,k} = E(z_{i,k})$$

$$= [W_x^{k^\top}, W_y^{k^\top}] \mathbf{\Sigma}_k^{-1} \begin{bmatrix} x_i - \mu_x^k \\ y_i - \mu_y^k \end{bmatrix}, \tag{18}$$

$$\Sigma_{z}^{i,k} = \operatorname{Var}(z_{i,k})$$

$$= I - [W_{x}^{k^{\top}}, W_{y}^{k^{\top}}] \Sigma_{k}^{-1} \begin{bmatrix} W_{x}^{k} \\ W_{x}^{k} \end{bmatrix},$$
(19)

$$\langle z_{i,k} z_{i,k}^{\top} \rangle = E(z_{i,k} z_{i,k}^{\top})$$

$$= \sum_{z}^{i,k} + \hat{z}_{i,k} \hat{z}_{i,k}^{\top}.$$
(20)

In the **M-step**, we use the estimations of those latent variables to optimize Θ . To begin with, we introduce the complete-data log-likelihood as in [1]

$$\mathcal{L}(\Theta; D, Z, \Gamma) = \sum_{i} \sum_{k} \gamma_{i,k} \log \left\{ w_k p(v_i, z_{i,k} | k) \right\}, \tag{21}$$

where

$$p(v_i, z_{i,k}|k) = p(v_i|z_{i,k}, k)p(z_{i,k}|k)$$
(22)

$$= p(x_i|z_{i,k}, k)p(y_i|z_{i,k}, k)p(z_{i,k}|k).$$
(23)

Denote $\widetilde{x}_{i,k}$ and $\widetilde{y}_{i,k}$ by

$$\widetilde{x}_{i,k} = x_i - W_x^k z_{i,k},\tag{24}$$

$$\widetilde{y}_{i,k} = y_i - W_y^k z_{i,k}. \tag{25}$$

Then we have

$$\log p(v_{i}, z_{i,k}|k) = \log p(x_{i}|z_{i,k}, k) + \log p(y_{i}|z_{i,k}, k) + \log p(z_{i,k}|k)$$

$$= -\frac{d}{2} \log 2\pi - \frac{1}{2} z_{i,k}^{\top} z_{i,k}$$

$$-\frac{n}{2} \log 2\pi - \frac{1}{2} \log |\Psi_{x}^{k}| - \frac{1}{2} (\widetilde{x}_{i,k} - \mu_{x}^{k})^{\top} (\Psi_{x}^{k})^{-1} (\widetilde{x}_{i,k} - \mu_{x}^{k})$$

$$-\frac{m}{2} \log 2\pi - \frac{1}{2} \log |\Psi_{y}^{k}| - \frac{1}{2} (\widetilde{y}_{i,k} - \mu_{y}^{k})^{\top} (\Psi_{y}^{k})^{-1} (\widetilde{y}_{i,k} - \mu_{y}^{k})$$

$$= -\frac{d+m+n}{2} \log 2\pi - \frac{1}{2} (\log |\Psi_{x}^{k}| + \log |\Psi_{y}^{k}|) - \frac{1}{2} z_{i,k}^{\top} z_{i,k}$$

$$-\frac{1}{2} \left\{ (\widetilde{x}_{i,k} - \mu_{x}^{k})^{\top} (\Psi_{x}^{k})^{-1} (\widetilde{x}_{i,k} - \mu_{x}^{k}) + (\widetilde{y}_{i,k} - \mu_{y}^{k})^{\top} (\Psi_{y}^{k})^{-1} (\widetilde{y}_{i,k} - \mu_{y}^{k}) \right\}.$$
(26)

Given hidden parameters Z and Γ , we need to maximize the expectation of the complete data log likelihood $E(\mathcal{L})$ with respect to Θ ,

$$E(\mathcal{L}) = -\frac{1}{2} \sum_{i} \sum_{k} \hat{\gamma}_{i,k} \{ \log w_k + \log p(v_i, z_{i,k}|k) \}$$
 (27)

subject to

$$\sum_{k} w_k = 1. (28)$$

We use Lagrange method to optimize the above problem, as in [3]

$$\max_{\Theta} E(\mathcal{L}) + \lambda(\sum_{k} w_k - 1), \tag{29}$$

where λ is Lagrange multiplier. Then we have the final result

$$w_k = \frac{1}{N} \sum_{i} \hat{\gamma}_{i,k},\tag{30}$$

$$\mu_x^k = \frac{\sum_i \hat{\gamma}_{i,k} (x_i - W_x^k \hat{z}_{i,k})}{\sum_i \hat{\gamma}_{i,k}},\tag{31}$$

$$\mu_y^k = \frac{\sum_i \hat{\gamma}_{i,k} (y_i - W_y^k \hat{z}_{i,k})}{\sum_i \hat{\gamma}_{i,k}},\tag{32}$$

$$W_x^k = \left\{ \sum_i \hat{\gamma}_{i,k} (x_i - \mu_x^k) \hat{z}_{i,k}^\top \right\} \left\{ \sum_i \hat{\gamma}_{i,k} \langle z_{i,k} z_{i,k}^\top \rangle \right\}^{-1}, \tag{33}$$

$$W_y^k = \left\{ \sum_i \hat{\gamma}_{i,k} (y_i - \mu_y^k) \hat{z}_{i,k}^\top \right\} \left\{ \sum_i \hat{\gamma}_{i,k} \langle z_{i,k} z_{i,k}^\top \rangle \right\}^{-1}, \tag{34}$$

$$\Psi_x^k = \frac{\sum_i \hat{\gamma}_{i,k} (x_i - W_x^k \hat{z}_{i,k} - \mu_x^k) (x_i - W_x^k \hat{z}_{i,k} - \mu_x^k)^\top}{\sum_i \hat{\gamma}_{i,k}} + W_x^k \Sigma_z^k W_x^{k\top}, \quad (35)$$

$$\Psi_{y}^{k} = \frac{\sum_{i} \hat{\gamma}_{i,k} (y_{i} - W_{y}^{k} \hat{z}_{i,k} - \mu_{y}^{k}) (y_{i} - W_{y}^{k} \hat{z}_{i,k} - \mu_{y}^{k})^{\top}}{\sum_{i} \hat{\gamma}_{i,k}} + W_{y}^{k} \sum_{z}^{k} W_{y}^{k\top}.$$
 (36)

In particular, the most relevant part to those used in our paper can be written as

$$w_k = \frac{1}{N} \sum_i \hat{\gamma}_{i,k},\tag{37}$$

$$\mu_x^k = \frac{\sum_i \hat{\gamma}_{i,k} \widetilde{x}_{i,k}}{\sum_i \hat{\gamma}_{i,k}},\tag{38}$$

$$\mu_y^k = \frac{\sum_i \hat{\gamma}_{i,k} \widetilde{y}_{i,k}}{\sum_i \hat{\gamma}_{i,k}},\tag{39}$$

$$\Psi_x^k = \frac{\sum_i \hat{\gamma}_{i,k} (\widetilde{x}_{i,k} - \mu_x^k) (\widetilde{x}_{i,k} - \mu_x^k)^\top}{\sum_i \hat{\gamma}_{i,k}} + W_x^k \Sigma_z^k W_x^{k\top}, \tag{40}$$

$$\Psi_y^k = \frac{\sum_i \hat{\gamma}_{i,k} (\widetilde{y}_{i,k} - \mu_y^k) (\widetilde{y}_{i,k} - \mu_y^k)^\top}{\sum_i \hat{\gamma}_{i,k}} + W_y^k \Sigma_z^k W_y^{k\top}. \tag{41}$$

Denote $\Psi_x^k - W_x^k \Sigma_z^k W_x^{k \top}$ by $\widetilde{\Psi}_x^k$. The corresponding gradient vectors for x are thus

$$\frac{\partial E(\mathcal{L})}{\partial \mu_x^k} = 2w_k (\Psi_x^k)^{-1} \left\{ \mu_x^k - \frac{\sum_i \gamma_{i,k} \widetilde{x}_{i,k}}{\sum_i \hat{\gamma}_{i,k}} \right\},\tag{42}$$

$$\frac{\partial E(\mathcal{L})}{\partial \Psi_x^k} = w_k (\Psi_x^k)^{-1} \left\{ \widetilde{\Psi}_x^k - \frac{\sum_i \gamma_{i,k} (\widetilde{x}_{i,k} - \mu_x^k) (\widetilde{x}_{i,k} - \mu_x^k)^\top}{\sum_i \hat{\gamma}_{i,k}} \right\} (\Psi_x^k)^{-1}. \tag{43}$$

Similarly, gradient vectors for y are

$$\frac{\partial E(\mathcal{L})}{\partial \mu_y^k} = 2w_k (\Psi_y^k)^{-1} \left\{ \mu_y^k - \frac{\sum_i \gamma_{i,k} \widetilde{y}_{i,k}}{\sum_i \hat{\gamma}_{i,k}} \right\},\tag{44}$$

$$\frac{\partial E(\mathcal{L})}{\partial \Psi_y^k} = w_k (\Psi_y^k)^{-1} \left\{ \widetilde{\Psi}_y^k - \frac{\sum_i \gamma_{i,k} (\widetilde{y}_{i,k} - \mu_y^k) (\widetilde{y}_{i,k} - \mu_y^k)^\top}{\sum_i \hat{\gamma}_{i,k}} \right\} (\Psi_y^k)^{-1}. \tag{45}$$

where $\widetilde{\Psi}_{y}^{k} = \Psi_{y}^{k} - W_{y}^{k} \Sigma_{z}^{k} W_{y}^{k \top}$.

References

- [1] C. M. Bishop and N. M. Nasrabadi. *Pattern recognition and machine learning*, volume 1. springer New York, 2006. 3
- [2] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In *Computer Vision and Pattern Recognition*, 2007. CVPR'07, pages 1–8. IEEE, 2007.
- [3] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analyzers. *Neural computation*, 11(2):443–482, 1999. 4