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a b s t r a c t 

Video based action recognition is one of the important and challenging problems in computer vision re- 

search. Bag of visual words model (BoVW) with local features has been very popular for a long time 

and obtained the state-of-the-art performance on several realistic datasets, such as the HMDB51, UCF50, 

and UCF101. BoVW is a general pipeline to construct a global representation from local features, which 

is mainly composed of five steps; (i) feature extraction, (ii) feature pre-processing, (iii) codebook gener- 

ation, (iv) feature encoding, and (v) pooling and normalization. Although many effort s have been made 

in each step independently in different scenarios, their effects on action recognition are still unknown. 

Meanwhile, video data exhibits different views of visual patterns , such as static appearance and motion 

dynamics. Multiple descriptors are usually extracted to represent these different views. Fusing these de- 

scriptors is crucial for boosting the final performance of an action recognition system. This paper aims 

to provide a comprehensive study of all steps in BoVW and different fusion methods, and uncover some 

good practices to produce a state-of-the-art action recognition system. Specifically, we explore two kinds 

of local features, ten kinds of encoding methods, eight kinds of pooling and normalization strategies, 

and three kinds of fusion methods. We conclude that every step is crucial for contributing to the final 

recognition rate and improper choice in one of the steps may counteract the performance improvement 

of other steps. Furthermore, based on our comprehensive study, we propose a simple yet effective rep- 

resentation, called hybrid supervector , by exploring the complementarity of different BoVW frameworks 

with improved dense trajectories. Using this representation, we obtain impressive results on the three 

challenging datasets; HMDB51 (61.9%), UCF50 (92.3%), and UCF101 (87.9%). 

© 2016 Elsevier Inc. All rights reserved. 

1

 

e  

s  

i  

l  

i  

m  

o  

h  

a  

s  

t  

j  

a  

q  

e

 

j  

m  

W  

o  

t  

b  

l  

h

1

. Introduction 

Human action recognition ( Aggarwal and Ryoo, 2011; Turaga

t al., 2008 ) has become an important area in computer vision re-

earch, whose aim is to automatically classify the action ongoing

n a temporally segmented video. It is one of the challenging prob-

ems in computer vision for several reasons. Firstly, there are large

ntra-class variations in the same action class, caused by various

otion speeds, viewpoint changes, and background clutter. Sec-

ndly, the identification of an action class is related to many other

igh-level visual clues, such as human pose, interacting objects,

nd scene class. These related problems are very difficult them-

elves. Furthermore, although videos are temporally segmented,
∗ Corresponding author. Tel.: +330763117277. 

E-mail address: xiaojiang.peng@inria.fr (X. Peng). 

W  

w  

s  

2  

ttp://dx.doi.org/10.1016/j.cviu.2016.03.013 

077-3142/© 2016 Elsevier Inc. All rights reserved. 
he segmentation of an action is more subjective than a static ob-

ect, which means that there is no precise definition about when

n action starts and finishes. Finally, the high dimension and low

uality of video data usually adds difficulty to develop robust and

fficient recognition algorithms. 

Early approaches interpret an action as a set of space-time tra-

ectories of two-dimensional or three-dimensional points of hu-

an joints ( Campbell and Bobick, 1995; Niyogi and Adelson, 1994;

ebb and Aggarwal, 1981; Yacoob and Black, 1999 ). These meth-

ds usually need dedicated techniques to detect body parts or

rack them at each frame. However, the detection and tracking of

ody part is still an unsolved problem in realistic videos. Recently,

ocal spatiotemporal features ( Laptev, 2005; Laptev et al., 2008;

ang et al., 2013a, 2014 ) with the follow-mentioned bag-of-visual-

ords pipeline have become the main stream and obtained the

tate-of-the-art performance on many datasets ( Wang and Schmid,

013a ). These methods do not require algorithms to detect human

http://dx.doi.org/10.1016/j.cviu.2016.03.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.03.013&domain=pdf
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Fig. 1. The pipeline of obtaining BoVWs representation for action recognition. It is mainly composed of five steps; (i) feature extraction, (ii) feature pre-processing, (iii) 

codebook generation, (iv) feature encoding, and (v) pooling and normalization. 
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bodies, and are robust to background clutter, illumination changes,

and noise. 

More recently, with the progress of pose estimation ( Yang and

Ramanan, 2011 ) and deep learning ( Krizhevsky et al., 2012; Si-

monyan and Zisserman, 2014 ), several works focus on how to com-

bine local features with high-level information (e.g., pose infor-

mation) and learned features. Xu et al. (2012) applied a popular

pose estimator ( Yang and Ramanan, 2011 ) and extracted HoG3D

features ( Klaser et al., 2008 ) based on the detected poses. Si-

monyan et al. designed the well-known two-stream convolutional

networks based on raw RGB frames and pre-computed optical

flows. Wang et al. (2015) combined the two-stream convolutional

networks with dense trajectories, Wang et al. (2013a ). Chéron

et al. (2015) proposed P-CNN (Pose Convolutional Neural Networks)

which extracts CNN features based on poses. 

BoVW framework and its variants ( Karaman et al., 2013; Murthy

and Goecke, 2013; Peng et al., 2013; Wang and Schmid, 2013b;

Wu, 2013 ) have dominated the research work of action recogni-

tion for a long time. It is necessary to overview the details and

uncover the good practice of each step in BoVW pipeline for be-

ginners or other researchers. As shown in Fig. 1 , the pipeline of

BoVW for video based action recognition consists of five steps; (i)

feature extraction, (ii) feature pre-processing, (iii) codebook gen-

eration, (iv) feature encoding, and (v) pooling and normalization.

Regarding local features, many successful feature extractors (e.g.

STIPs ( Laptev, 2005 ), Dense Trajectories ( Wang et al., 2013a )) and

descriptors (e.g. HOG ( Laptev et al., 2008 ), HOF ( Laptev et al.,

2008 ), MBH ( Wang et al., 2013a )) have been designed for repre-

senting the visual patterns of cuboid. Feature pre-processing tech-

nique mainly de-correlates these descriptors to make the follow-

ing representation learning more stable. For codebook generation,

it aims to describe the local feature space and provide a partition

(e.g. k -means ( Bishop, 2006 )) or generative process (e.g. GMMs

( Bishop, 2006 )) for local descriptor. Feature encoding is a hot topic

in image classification and many alternatives have been devel-

oped for effective representation and efficient implementation (see

good surveys Chatfield et al. (2011) and Huang et al. (2014) ). Max

pooling ( Yang et al., 2009 ) and sum pooling ( Zhang et al., 2007 )

are usually used to aggregate information from a spatiotempo-

ral region. For normalization methods, typical choices include � 1 -

normalization ( Zhang et al., 2007 ), � 2 -normalization ( Wang et al.,

2010 ), power normalization ( Perronnin et al., 2010 ), and intra nor-
alization ( Arandjelovic and Zisserman, 2013 ). How to make the

est decision in each step for action recognition still remains un-

nown and needs to be extensively explored. 

Meanwhile, unlike static image, video data exhibits different

iews of visual pattern, such as appearance, motion, and motion

oundary, and all of them play important roles in action recog-

ition. Therefore, multiple descriptors are usually extracted from

 cuboid and each descriptor corresponds to a specific aspect of

he visual data ( Laptev et al., 2008; Wang et al., 2013a ). BoVW is

ainly designed for a single descriptor and ignores the problem of

using multiple descriptors. Many research studies have been de-

oted to fusing multiple descriptor for boosting performance ( Cai

t al., 2014; Gehler and Nowozin, 2009; Tang et al., 2013; Vedaldi

t al., 2009a; Wang and Schmid, 2013a ). Typical fusion methods

nclude descriptor level fusion ( Laptev et al., 2008; Wang et al.,

012 ), representation level fusion ( Wang et al., 2013a; Wang and

chmid, 2013b ), and score level fusion ( Myers et al., 2014; Tang

t al., 2013 ). For descriptor level fusion, multiple descriptors from

he same cuboid are concatenated as a whole one and fed into

 BoVW framework. For representation level fusion, the fusion is

onducted in the video level, where each descriptor is firstly fed

nto a BoVW framework independently and the resulting global

epresentations are then concatenated to train a final classifier. For

core level fusion, each descriptor is separately input into a BoVW

ramework and used to train a recognition classifier. Then the

cores from multiple classifiers are fused using arithmetic mean or

eometric mean. In general, these fusion methods are developed

n different scenarios and adapted for action recognition by differ-

nt works. How these fusion methods influence the final recognition

f a BoVW framework and whether there exists a best one for action

ecognition is an interesting question and well worth of a detailed

nvestigation. 

Several related study works have been performed about encod-

ng methods for image classification ( Chatfield et al., 2011; Huang

t al., 2014 ). But these study works are with image classification

ask or lacking full exploration of all steps in BoVW framework.

his paper is an extension of our previous work ( Wang et al.,

012 ). We extend ( Wang et al., 2012 ) from the following aspects: 

• We explore pre-processing step for all the encoding methods

(not only for Fisher vectors as Wang et al. (2012) ). 
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• We extend the study to dense features, and find different obser-

vations between dense features and sparse features (only STIP

in Wang et al. (2012) ). 
• We summarize all the popular encoding methods, and give a

generic analysis here. 
• We first introduce intra-normalization for action recognition,

and it is helpful for dense features because it can suppress fea-

ture burstiness. 
• We explore different fusion methods, and give more experi-

ments and analysis. 

In short, this article aims to provide a comprehensive study of all

teps in a BoVW pipeline and different fusion methods, and uncover

ome good practices to produce a state-of-the-art action recognition

ystem . Our work is mainly composed of three parts; 

Exploration of BoVW. We place an emphasis on extensively

xplorations about all components in a BoVW pipeline and dis-

overy of useful practices. Specifically, we investigate two widely-

sed local features, namely Space Time Interest Points (STIPs) with

OG, HOF ( Laptev, 2005 ), and Improved Dense Trajectories (iDTs)

ith HOG, HOF, MBH ( Wang and Schmid, 2013a ). For feature en-

oding methods, the current approaches can be roughly classified

nto three categories; (i) voting based encoding methods, (ii) re-

onstruction based encoding methods, (iii) supervector based en-

oding methods. For each type of encoding methods, we choose

everal representative approaches and totally analyze ten encod-

ng methods. Meanwhile, we explore the relations among these

ifferent encoding methods and provide a unified and generative

erspective over these encoding methods. We fully explored eight

ooling and normalization strategies for each encoding method. 

Investigation of fusion methods. As combination of multiple

escriptors is very crucial for performance improvement, we also

nvestigate the influence of different fusion methods in our de-

igned action recognition system. Specifically, we study three kinds

f fusion methods, namely descriptor level fusion, representation

evel fusion, and score level fusion. We find that the way differ-

nt descriptors correlate with each other determines the effective-

ess of fusion methods. The performance gain obtained from fus-

ng multiple descriptors mainly owns to their complementarity. We

bserve that this complementarity is not only with multiple de-

criptors, but also with multiple BoVW models. Based on this view,

e propose a new representation, called hybrid supervector , com-

ining the outputs of multiple BoVW models of improved dense

rajectories. This representation utilizes the benefit of each BoVW

nd fully considers the complementarity among them. In spite of

ts simplicity, this representation turns out to be effective for im-

roving final recognition rate. 

Comparison with the state of the art. Guided by the practice

ips concluded from our insightful analysis of BoVW variants and

eature fusion methods, we design an effective action recognition

ystem using our proposed hybrid supervector, and demonstrate

ts performance on three challenging datasets; HMDB51 ( Kuehne

t al., 2011 ), UCF50 ( Reddy and Shah, 2013 ), and UCF101 ( Soomro

t al., 2012 ). Specifically, hybrid supervector is obtained by repre-

entation level fusion of Fisher vectors ( Perronnin et al., 2010 ) and

VC- k . From comparison with other methods, we conclude that our

ecognition system reaches the state-of-the-art performance on the

hree datasets, and our hybrid supervector acts as a new baseline

or further research of action recognition. 

The rest of this paper is organized as follows. In Section 2 ,

e give a detailed description of each step in the BoVW frame-

ork. Meanwhile, we uncover several useful techniques commonly

dopted in these encoding methods, and provide a unified genera-

ive perspective over these encoding methods. Then, several fusion

ethods and a new representation are introduced in Section 3 . Fi-

ally, we empirically evaluate the BoVW frameworks and fusion
ethods on three challenging datasets. We analyze these experi-

ent results and uncover some good practices for constructing a

tate-of-the-art action recognition system. We conclude the paper

n Section 5 . 

. Framework of bag of visual words 

Here we refer to BoVW as a generic framework which obtains

ideo-level representations from local features. As shown in Fig. 1 ,

he pipeline of a BoVW framework consists of five steps; (i) fea-

ure extraction, (ii) feature pre-processing, (iii) codebook genera-

ion, (iv) feature encoding, and (v) pooling and normalization. Then

he global representation is fed into a classifier such as linear SVM

or action recognition. In this section, we will give detailed descrip-

ions of the popular technical choices in each step, which are very

mportant for constructing a state-of-the-art recognition system.

urthermore, we summarize several useful techniques in these en-

oding methods and provide a unified generative perspective over

hese different encoding methods. 

.1. Feature extraction 

Low-level local features have become popular in action recog-

ition due to their robustness to background clutter and indepen-

ence on detection and tracking techniques. These local features

re typically divided into two parts: detecting a local region (de-

ector) and describing the detected region (descriptor) ( Wang et al.,

009 ). Many feature detectors have been developed such as 3D-

arris ( Laptev, 2005 ), 3D-Hessian ( Willems et al., 2008 ), Cuboid

 Dollar et al., 2005 ), Dense Trajectories ( Wang et al., 2013a ), and

mproved Dense Trajectories ( Wang and Schmid, 2013a ). These de-

ectors try to select locations and scales in a video by maximiz-

ng certain kind of function or using a dense sampling strategy. To

escribe the extracted region, several hand-crafted features have

een designed such as Histogram of Oriented Gradients (HOG)

 Laptev et al., 2008; Wang et al., 2013a ), HOF ( Laptev et al., 2008;

ang et al., 2013a ), and Motion Boundary Histogram (MBH) ( Wang

t al., 2013a; Wang and Schmid, 2013a ). Multiple descriptors are

sually adopted to represent the local region, each of which cor-

esponds to a certain aspect of a visual pattern such as static ap-

earance, motion, and motion boundary. 

Among these local features,STIPs ( Laptev, 2005 ) and Improved

ense Trajectories (iDTs) ( Wang et al., 2013a ) are widely used due

o their easy usages and good performance. STIPs resort to 3D-

arris to extract regions of high motion salience, which result in

 set of sparse interest points. For each interest point, STIPs ex-

ract two kinds of descriptors, namely HOG and HOF. iDTs features

re an improved version from Dense Trajectories (DTs), where a

et of dense trajectories are firstly obtained by tracking pixels with

edian filter, and five kinds of descriptors are extracted, namely

rajectory shape, HOG, HOF, MBHx, and MBHy. iDTs improve the

erformance of DTs by taking into account camera motion correc-

ion. Generally speaking, iDTs resort to more sophisticated engi-

eering skills and integrate much richer low-level visual cues com-

ared with STIPs. Therefore, they represent two different kinds of

ow level features, namely sparse features and dense features, and

ay exhibit different properties with respect to variants of BoVW

rameworks. 

.2. Feature pre-processing 

The low-level local descriptors are usually high dimensional and

trong correlated, which results in great challenges in the subse-

uent unsupervised learning such as k -means clustering and GMM

raining. Principal Component Analysis (PCA) ( Bishop, 2006 ) is a
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1 We use s to denote the code of voting and reconstruction based encoding meth- 

ods, and S to represent the one of supervector based encoding methods. 
statistical procedure to pre-process these features, which uses or-

thogonal transform to map feature into a set of linearly uncorre-

lated variables called principal components. Typically, the number

of used principal components is less than the number of original

variables, thus it results in dimension reduction. Whitening tech-

nique usually follows the PCA, which aims to ensure that the fea-

tures have the same variance through different dimensions. Nor-

mally, to unify the feature coordinate, mean subtraction is applied

to all features which refer to the centered features. The transform

formula of pre-processing is as follows: 

x = �U 

� (f − f m 

) , (1)

where f ∈ R M is the original feature, x ∈ R N is the PCA-whitened

result, U ∈ R M × N is the dimension reduction matrix from PCA,

f m 

is the mean feature generated from a feature set where

U is computed, � is the diagonal whitening matrix diag(�) =
[1 / 

√ 

λ1 , . . . , 1 / 
√ 

λN ] , and λi is the i th largest eigenvalue of covari-

ance matrix. For simplicity, we refer to all the features as the cen-

tered ones in the following sections by default. 

It is worth noting that this step is not necessary and many pre-

vious encoding approaches skip this step, such as Vector quantiza-

tion ( Sivic and Zisserman, 2003 ), Sparse coding ( Yang et al., 2009 ),

and Vector of locally aggregated descriptor ( Jégou et al., 2012 ).

However, in our evaluation, we found this step is of great impor-

tance to improve the recognition performance. 

2.3. Codebook generation 

In this section, we present the codebook generation algorithms

used for the following feature encoding methods. Generally there

are two kinds of approaches: (i) partitioning the feature space into

regions, each of which is represented by its center, called code-

word, and (ii) using generative model to capture the probability

distribution of features. k -mean ( Bishop, 2006 ) is a typical method

for the first type, and GMM ( Bishop, 2006 ) is widely used for the

second. We refer to an evaluation ( Peng et al., 2014a ) for other

codebook generation methods on action recognition. 

k -means. There are many vector quantization methods such as

k -means clustering ( Bishop, 2006 ), hierarchical clustering ( Johnson,

1967 ), and spectral clustering ( Ng et al., 2001 ). Among them, k -

means is probably the most popular way to construct codebook.

Given a set of local features { x 1 , . . . , x M 

} , where x m 

∈ R 

D , our goal

is to partition the feature set into K clusters { d 1 , . . . , d K } , where

d k ∈ R 

D is a prototype associated with the k th cluster. Suppose that

we introduce a corresponding set of binary indicator variables r mk 

∈ {0, 1} for each feature x m 

. If descriptor x m 

is assigned to clus-

ter k , then r mk = 1 and r m j = 0 for j � = k . We can then define an

objective function: 

min J ({ r mk , d k } ) = 

M ∑ 

m =1 

K ∑ 

k =1 

r mk ‖ x m 

− d k ‖ 

2 
2 . (2)

The problem is to find values for { r mk } and { d k } to minimize the

objective function J . Usually, we can optimize it in an iterative

procedure where each iteration involves two successive steps cor-

responding to optimization with respect to the r nk and d k . The de-

tails can be found in Bishop (2006) . 

GMM. Gaussian Mixture Model is a generative model to de-

scribe the distribution over feature space: 

p(x ; θ ) = 

K ∑ 

k =1 

πk N (x ;μk , �k ) , (3)

where K is the mixture number, and θ = { π1 , μ1 , �1 , . . . , πK , μK ,

�K } are model parameters. N (x ;μk , �k ) is D -dimensional Gaus-

sian distribution. 
Given the feature set X = { x 1 , . . . , x M 

} , the optimal parame-

ers of GMM are learned through maximum likelihood estima-

ion argmax θ ln p ( X ; θ ). We use the iterative EM algorithm ( Bishop,

006 ) to solve this problem. 

k -means algorithm performs a hard assignment of feature de-

criptor to codeword, while the EM algorithm of GMM makes soft

ssignment of feature to each mixture component based on pos-

erior probabilities p ( k | x ). But unlike k -means, GMM delivers not

nly the mean information of code words, but also the shape of

heir distribution. 

.4. Encoding methods 

In this section, we provide a detailed description of thirteen

eature encoding methods. According to the characteristics of en-

oding methods, they can be roughly classified into three groups,

amely (i) voting based encoding method, (ii) reconstruction based

ncoding method, and (iv) supervector based encoding method, as

hown in Table 1 . 

Let X = [ x 1 , x 2 , . . . , x N ] ∈ R 

D ×N be a set of D -dimensional local

escriptors extracted from a video, and given a codebook with K

odewords, D = [ d 1 , d 2 , . . . , d K ] ∈ R 

D ×K , the objectiv e of encoding

s to compute a code s (or S) 1 for input x with D . Table 1 lists all

he formulations and dimension of encoding methods, where s ( i )

enotes the i th element of s . 

.4.1. Voting based encoding methods 

Voting based encoding methods ( van Gemert et al., 2010;

uang et al., 2011; Liu et al., 2011; Sivic and Zisserman, 2003; Wu

t al., 2012 ) are designed from the perspective of encoding process

nd each descriptor directly votes for the codeword using a spe-

ific strategy. A K -dimensional ( K is the size of codebook) code s

s constructed for each single descriptor to represent the votes of

he whole codebook. Methods along this line include Vector Quan-

ization(or Hard Voting) ( Sivic and Zisserman, 2003 ), Soft Assign-

ent (or Kernel Codebook Coding) ( van Gemert et al., 2010 ), Lo-

alized Soft Assignment ( Liu et al., 2011 ), Salient Coding ( Huang

t al., 2011 ), and Group Salient Coding ( Wu et al., 2012 ), as shown

n Fig. 2 . 

For each descriptor x , the voting value for the codeword d i can

e viewed as a function of x , namely s (i ) = φ(x ) . Different encod-

ng methods differ in the formulation of φ( x ). For encoding of Vec-

or Quantization (VQ): 

Q: φ(x ) = 

{
1 , if i = arg min j || x − d j || 2 , 
0 , otherwise, 

(4)

here each descriptor x only votes for its nearest codeword. The

Q encoding method can be viewed as a hard quantization and

ay cause much information loss. To encounter this problem, SA

ncoding method votes for all the codewords: 

A: φ(x ) = ω i , (5)

here ω i is the normalized weight of descriptor x with respect to

odeword d i : 

 i = 

exp (−β‖ x − d i ‖ 

2 
2 ) ∑ K 

j=1 exp (−β‖ x − d j ‖ 

2 
2 
) 
, (6)

here β is a smoothing factor controlling the softness of the

ssignment. Considering the manifold structure in the descriptor

pace, localized SA- k votes for its k -nearest codewords: 

A- k : φ(x ) = ω 

′ 
i = 

I(x , d i ) exp (−β‖ x − d i ‖ 

2 
2 ) ∑ K 

j=1 I(x , d j ) exp (−β‖ x − d j ‖ 

2 
2 
) 
, (7)
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Fig. 2. Comparison among all the voting based encoding methods. 
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here I ( x, d i ) is the indicator function to identify whether d i be-

ongs to the k nearest neighbor of x : 

(x , d i ) = 

{
1 if d i ∈ NN k (x ) , 
0 otherwise . 

(8)

ote that VQ can be viewed as a special case of SA- k when k is set

s 1. 

Fig. 2 illustrates the difference of these voting based encod-

ng methods. VQ, Salient coding, and Group salient coding are all

ard assignment strategies. Unlike VQ, the Salient coding employs

he difference between the closest visual word and the other k − 1

losest ones to obtain the voted weight but not 1. The detailed for-

ulations of Salient coding and Group salient coding can be found

n Table 1 . 

.4.2. Reconstruction based encoding methods 

Reconstruction based encoding methods ( Tropp and Gilbert,

007; Wang et al., 2010; Yang et al., 2009; Yu et al., 2009 ) are de-

igned from the perspective of decoding process, where the codes

 are enforced to reconstruct the input descriptor x . This kind of

lgorithm includes Orthogonal Matching Pursuit (OMP) ( Tropp and

ilbert, 2007 ), Sparse Coding (SPC) ( Yang et al., 2009 ), Local Co-

rdinate Coding(LCC) ( Yu et al., 2009 ), and Locality-constrained

inear Coding (LLC) ( Wang et al., 2010 ). Typically, these encoding

ethods are formulated in a least square framework with a regu-

arization term: 

rg min 

s 
|| x − Ds || 2 2 + λψ(s ) , (9)

here the least square term enforce the small reconstruction error,

( s ) encourages some properties of codes s , λ is a weight factor to

alance this two terms. 

Among these methods, OMP and SPC pursue a sparse represen-

ation. As for OMP, this constraint is conducted by � 0 -norm: 

MP: ψ(s ) = || s || 0 (10)

here � 0 -norm means the number of non-zero elements in s .

owever, due to the non-convexity of � 0 -norm, solution to this

roblem usually needs some heuristic strategy and obtains an ap-

roximate optimal solution. SPC relaxes this non-convex � 0 -norm

ith � 1 -norm: 

PC: ψ(s ) = || s || 1 (11)

here � 1 -norm can also encourage the sparsity in code s , and the

olution is equal to the solution of � 0 -norm under some conditions

 Bruckstein et al., 2009 ). The � 1 -norm relaxation allows for more

fficient optimization algorithm ( Lee et al., 2006 ) and obtaining the

lobal optimal solution. 

OMP and SPC are empirically observed to tend to be local, i.e.

onzero coefficients are often assigned to bases nearby to the en-

oded data ( Yu et al., 2009 ). But this locality cannot be ensured

heoretically and Yu et al. (2009) suggested a modification to SPC,

alled Local Coordinate Coding (LCC). This encoding method explic-

tly encourages the coding to be local, and Yu et al. theoretically
ointed out that under certain assumptions locality is more essen-

ial than sparsity for successful nonlinear function learning using

he obtained codes. Specifically, the LCC is defined as follows: 

CC: ψ(s ) = ‖ ̂ e � | s |‖ 1 , s . t . 1 

T s = 1 , (12)

here � denotes the element-wise multiplication, ˆ e is the locality

dapter that gives weights for each basis vector proportional to its

imilarity to the input descriptor x : 

ˆ  = [ dist (x , d 1 ) , . . . , dist (x , d K ) ] 
� 
, (13) 

ith dist( x, d k ) being the Euclidean distance between x and d k .

ue to the problem of � 1 -norm optimization in both SPC and

CC, it is computationally expensive and hard to apply to large

cale problems. Then, a practical coding scheme called Locality-

onstrained Linear Coding (LLC) ( Wang et al., 2010 ) is designed,

hich can be viewed as a fast implementation of LCC that uti-

izes the locality constraint to project each descriptor into its local-

oordinate system: 

LC: ψ(s ) = ‖ e � s ‖ 

2 
2 , s . t . 1 

T s = 1 , (14)

here e is the exponentiation of ˆ e : 

 = exp 

(
dist (x , D ) 

σ

)
, (15) 

ith σ being used for adjusting the weighted decay speed for the

ocality adaptor. The constraint 1 T s = 1 follows the shift-invariant

equirements of the final code vector. In practice, an approximate

olution can be used to improve the computational efficiency of

LC. It directly selects the k nearest basis vectors of x to minimize

he first term in Eq. (9) by solving a much smaller linear system.

his gives that the code coefficients for the selected k basis vectors

nd other code coefficients are simply set to be zero. 

.4.3. Supervector based encoding methods 

Supervector based encoding methods yield a very high dimen-

ional representation by aggregating high order statistics. Typical

ethods include Local Tangent-based Coding (LTC) ( Yu and Zhang,

010 ), Super Vector Coding (SVC) ( Zhou et al., 2010 ), Vector of Lo-

ally Aggregated Descriptors (VLAD) ( Jégou et al., 2012 ), and Fisher

ector (FV) ( Perronnin et al., 2010 ) . Note that we refer to SVC as a

pecific encoding method and supervector based as a group of en-

oding methods. 

Local Tangent-based Coding ( Yu and Zhang, 2010 ) assumes that

odebook and descriptors are embedded in a smooth manifold. The

ain contents of LTC are manifold approximation and intrinsic di-

ensionality estimation. Under the Lipschitz smooth condition, the

onlinear function f ( x ) can be approximated by a local linear func-

ion as: 

f (x ) ≈
K ∑ 

i =1 

s (i ) 
[

f (d i ) + 0 . 5 ∇ f (d i ) 
T (x − d i ) 

]
, (16)

here s ( i ) is obtained by LCC ( Yu et al., 2009 ). Then, this ap-

roximate function can be viewed as a linear function of a cod-

ng vector [ s (i ) , s (i )(x − d i )] K 
i =1 

∈ R 

K×(1+ D ) . LTC argues that there
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s lower intrinsic dimensionality in the feature manifold. To ob-

ain it, Principal Component Analysis (PCA) is applied to the term

f s (i )(x − d i ) using a projection matrix U i = [ u 

i 
1 
, . . . , u 

i 
C 

] ∈ R 

D ×C 

rained from training data, i.e., the local tangent directions of the

anifold. Therefore, the final coding vector for LTC is written as

ollows: 

TC: S = 

[
αs (i ) , s (i )(x − d i ) 

T U i 

]K 

i =1 
, (17)

here α is a positive scaling factor to balance the two types of

odes. Super Vector Coding (SVC) ( Zhou et al., 2010 ) is a simple

ersion of LTC. Unlike LTC, SVC yields the s ( i ) via VQ and does

ot apply PCA to the term of s (i )(x − d i ) . Consequently, the cod-

ng vector of SVC is defined as follows: 

VC: S = 

[
0 , 0 , . . . , 

αs (i ) 

N 

√ 

p i 
, 

s (i ) 

N 

√ 

p i 
(x − d i ) , . . . , 0 , 0 

]
, (18)

here s (i ) = 1 , d i is the closest visual word to x , and α is a posi-

ive constant. 

Fisher vector is another supervector based encoding method de-

ived from fisher kernel ( Jaakkola and Haussler, 1998 ) and is intro-

uced for large-scale image categorization ( Perronnin et al., 2010 ).

he fisher kernel is a generic framework which combines the ben-

fits of generative and discriminative approaches. As it is known,

he gradient of the log-likelihood with respect to a parameter can

escribe how that parameter contributes to the process of gener-

ting a particular example. Then the video can be described by the

radient vector of log likelihood with respect to the model param-

ters ( Jaakkola and Haussler, 1998 ): 

 

x 
θ = ∇ θ log p(x ; θ ) . (19)

ote that the dimensionality of this vector depends on the number

f parameters in θ . Perronnin et al. (2010) developed an improved

sher vector which is as follows: 

 

x 
μ,k = 

1 √ 

πk 

γk 

(
x − μk 

σk 

)
, (20)

 

x 
σ,k = 

1 √ 

2 πk 

γk 

[
(x − μk ) 

2 

σ 2 
k 

− 1 

]
, (21)

here γ k is the weight of local descriptor x to the k th Gaussian

ixture: 

k = 

πk N (x ;μk , �k ) ∑ K 
i =1 πi N (x ;μi , �i ) 

. (22)

he final fisher vector is the concatenation of this two gradients:

V : S = [ G x μ, 1 , G x σ, 1 , . . . , G x μ,K , G x σ,K ] . (23)

LAD ( Jégou et al., 2012 ) can be viewed as a hard version of FV

nd it only keeps the first order statistics: 

LAD: S = [ 0 , . . . , s (i )(x − d i ) , . . . , 0 ] , (24)

here s (i ) = 1 , d i is the closest visual word to x . 

.4.4. Relations of encoding methods 

In this section, we summarize several practical techniques

idely used in these encoding methods, and give a unified gen-

rative perspective of these encoding methods. This analysis will

ncover the underlying relations between these methods and pro-

ide insights for developing new encoding methods. 

From “hard” to “soft”. These encoding methods transform lo-

al features from descriptor space to codeword space. There are

wo typical transformation rules in these methods, namely hard as-

ignment and soft assignment . Hard assignment quantizes the fea-

ure descriptor into a single codeword, while soft assignment en-

bles the feature descriptor to vote for multiple codewords. In gen-

ral, soft assignment accounts for the codeword uncertainty and
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normalization. 
lausibility ( van Gemert et al., 2010 ), and reduces the information

oss during encoding. This technical skill of soft assignment can be

ound in several encoding algorithms, such as SA- all vs. VQ, and

LAD vs. Fisher Vector. By the same techniques, we can extend the

LAD to VLAD- all , SVC to SVC- all : 

LAD −all : S = [ ω 1 (x − d 1 ) , · · · , ω K (x − d K )] , (25)

SVC −all : S = 

[ 
αω 1 

N 
√ 

p 1 
, 

αω 1 
N 

√ 

p 1 
(x − d 1 ) , · · · , 

αω K 
N 

√ 

p K 
, 

αω K 
N 

√ 

p K 
(x − d K ) 

] 
, 

(26) 

here ω i is the normalized weight of feature descriptor x with re-

pect to codeword d i defined in Eq. (6) . 

From “global” to “local”. In several encoding methods, the

anifold structure in descriptor space is captured to improve the

tability of encoding algorithms. In the traditional soft assignment,

ach descriptor is assigned with all the codewords, which is called

lobal assignment . However, in the high dimensional space of fea-

ure descriptor, Euclidian distance may be not reliable especially

hen the codeword is outside the neighborhood of feature de-

criptor. Therefore, in the encoding methods such as SA- k and LLC,

ach descriptor is enforced to only vote for these codewords be-

onging to its k -nearest neighbors, called local assignment . In gen-

ral, the incorporation of local structure in encoding methods is

ble to improve the stability and reduce the sensitivity to noise in

 descriptor. Using the same techniques, we can also extend the

LAD- all to VLAD- k , SVC- all to SVC- k by replacing the ω i in Eqs.

25) , (26) with localized ω 

′ 
i 

defined in Eq. (7) : 

LAD −k : S = [ ω 

′ 
1 (x − d 1 ) , · · · , ω 

′ 
K (x − d K )] , (27)

SVC −k : S = 

[ 
αω ′ 1 

N 
√ 

p 1 
, 

αω ′ 1 
N 

√ 

p 1 
(x − d 1 ) , · · · , 

αω ′ K 
N 

√ 

p K 
, 

αω ′ K 
N 

√ 

p K 
(x − d K ) 

] 
, 

(28) 

From “zero order statistics” to “high order statistics”. In

hese supervector based encoding methods, they preserve not only

he affiliations of descriptors to codewords (zero order statistics),

ut also the high order information such as the difference between

escriptors and codeword, thus it results in a high-dimensional su-

ervector representation. As these supervectors keep much richer

nformation for each codeword, the codebook size is usually much

maller than that of voting and reconstruction based encoding

ethods. Above all, these supervectors are with high dimension,

toring more information, and are proved to outperform the other

wo kinds of encoding methods in Section 4 . The high dimensional

upervector will be a promising representation and designing ef-

ective dimension reduction algorithms for the supervector will be

n interesting problem. 

Generative perspective of encoding methods. Although these

ncoding methods are developed in different scenarios, a unified

enerative probabilistic model can be used to uncover the under-

ying relations among them. These encoding methods can be inter-

reted in a latent generative model: 

p(h ) ∈ P , 

p(x | h ) = N (x ;W h + μx , �) , 
(29) 

here x ∈ R D represents the descriptor, h ∈ R K denotes the latent

actor, and N (x ;W h + μx , �) is multivariate Gaussian distribution.

ifferent encoding methods are mainly different in two aspects;

ow to model the prior distribution P of latent factor h and How to

se the probabilistic model to transform the descriptor into the code-

ord space. 
For encoding methods such as VQ, SA- all , VLAD- all , and Fisher

ector, they choose the prior distribution p ( h ) as follows: 

p(h ) = 

K ∏ 

i =1 

π h i 
i 

, (30) 

here h ∈ {0, 1} K is discrete random variable, and the prior dis-

ribution is a Multinomial distribution. For SA- all , this Mutino-

ial distribution is specified by uniform distribution, i.e. π1 =
· · = πK = 

1 
K . For Fisher vector, this multinomial distribution is

earned during GMM training. Meanwhile the SA- all chooses the

atent variable embedding to encode the descriptor by computing

onditional expectation, i.e. s (x ) = E (h | x ) , while the FV chooses

he gradient embedding ( Jaakkola and Haussler, 1998 ), i.e. S(x ) =
 θ log p(x ; θ ) . The VQ encoding can be viewed as an extreme case

f the Soft- all when: 

p(x | s ) = N (x ;W s + μx , εI) , ε → 0 . (31)

LAD- all and SVC- all can be viewed as the gradient embedding in

his extreme case. 

For encoding methods such as sparse coding, the latent variable

 is continuous and its corresponding prior distribution is specified

s: 

p(h ) = 

K ∏ 

i =1 

λ

2 

exp (−λ| h i | ) . (32)

his prior distribution is called Laplace prior distribution. Sparse

oding can be viewed as the latent variable embedding of this

enerative model using the maximum posterior value (MAP), i.e.

 (x ) = arg max h p(h | x ) . 

.5. Pooling and normalization methods 

Given the code coefficients of all local descriptors in a video, a

ooling operation is often used to obtain a global representation

 for the video. Specifically, there are two common pooling strate-

ies: 

• Sum Pooling. With sum pooling scheme ( Lazebnik et al., 2006 ),

the k th component of p is p k = 

∑ N 
n =1 s n (k ) . 

• Max Pooling. With max pooling scheme ( Yang et al., 2009 ), the

k th component of p is p k = max (s 1 (k ) , · · · , s N (k )) , where N is

the number of extracted local descriptors, and s n denotes the

code of descriptor x n . 

In Boureau et al. (2010) , the authors presented a theoretical

nalysis of average pooling and max pooling. Their results indicate

hat sparse features may prefer max pooling. 

To make this representation invariant to the number of ex-

racted local descriptors, the pooling result p is further normalized

y some methods. Generally, there are three common normaliza-

ion techniques: 

• � 1 -Normalization. In � 1 normalization ( Yang et al., 2009 ), the

feature p is divided by its � 1 -norm: p = p / ‖ p ‖ 1 . 
• � 2 -Normalization. In � 2 normalization ( Perronnin et al., 2010 ),

the feature p is divided by its � 2 -norm: p = p / ‖ p ‖ 2 . 
• Power Normalization. In power normalization ( Perronnin

et al., 2010 ), we apply in each dimension the following func-

tion: 

f (p k ) = sign (p k ) | p k | α. 

where 0 ≤ α ≤ 1 is a parameter for normalization. We can

combine power normalization with � 1 -normalization or � 2 -
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Fig. 3. Feature fusion is performed in different levels: descriptor level, representation level, and score level. 
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Recently, a special normalization strategy is proposed for the

VLAD, called intra-normalization ( Arandjelovic and Zisserman,

2013 ). In this paper, we extend it to all the supervector based en-

coding algorithms. This method carries out normalization opera-

tion in a block by block manner, where each block denotes the

vector related to one codeword. Generally, the intra-normalization

can be formulated as follows: 

p = 

[
p 

1 

‖ p 

1 ‖ 

, . . . , 
p 

k 

‖ p 

k ‖ 

, . . . , 
p 

K 

‖ p 

K ‖ 

]
, (33)

where p 

k denotes a vector related to codeword d k (or the k th

Gaussian), ‖ · ‖ may be � 1 -norm or � 2 -norm. 

3. Feature fusion 

Fusing multiple local features has turned out to be an effec-

tive method to boost the performance of recognition system in

computer vision community ( Cai et al., 2014; Gehler and Nowozin,

2009; Tang et al., 2013; Vedaldi et al., 2009a; Wang and Schmid,

2013a ). The video data is usually characterized in multiple views,

such as static appearance, motion pattern, and motion boundary.

The essence of multi-view data requires fusing different features

for action recognition. In this section, we present several feature

fusion methods for action recognition, and analyze its correspond-

ing properties. Meanwhile, based on the analysis of fusion meth-

ods, we propose a simple yet effective representation, called hybrid

supervector . 

As shown in Fig. 3 , the fusion methods are usually conducted in

different levels, typically including: descriptor level, representation

level, and score level. For descriptor level fusion, it is performed in

the cuboid level, where multiple descriptors from the same cuboid

are concatenated into a single one, and then it is fed into the

BoVW to obtain the global representation. For representation-level

fusion, it is performed in the video level, where different descrip-

tors are input into BoVW separately and the resulting global rep-

resentations are fused as a single one, which is further fed into

classifier for recognition. For score-level fusion, it is also performed
n the video level, but the representations of different descriptors

re used independently for classifier training. The final recognition

core is obtained by fusing the scores from multiple classifiers. For

using the scores, arithmetical mean or geometrical mean is often

sed. We note that there are many other fusion methods like mul-

iple kernel learning (MKL) ( Sun et al., 2010 ) and weighted score

usion ( Tamrakar et al., 2012 ), but we do observe that those fusion

ethods based on representations or scores do not help. There are

lso evidences in Vedaldi et al. (2009b ) and Tamrakar et al., 2012 )

hat MKL obtains similar results with averaging kernel (which is

he same as representation concatenation) and weighted score fu-

ion by a retrained SVM on score is slightly worse than geometrical

ean fusion. 

In general, these fusion methods at different levels own their

ros and cons, and the choice of fusion method should be guided

y the dependence of descriptors. If these multiple descriptors

rom the same cuboid are highly correlated, it will be better to

esort to descriptor level feature fusion. Otherwise, the choice of

escriptor level fusion is not a good one, as descriptor level fusion

sually results in a higher dimension and adds the difficulty for

nsupervised feature learning such as k -means and sparse coding.

or the case where different views of features are less correlated

n cuboid level but highly correlated in video level, representation

evel fusion is usually a good choice. When these different features

re independent with each other, it will be appropriate to choose

core level fusion, as this fusion reduces the dimension for classi-

er training and makes the learning faster and more stable. 

The performance boosting of fusing multiple features mainly

wns the complementarity of these features. However, the com-

lementarity can be explored not only for different features, but

lso for different types of BoVW methods. In this paper, we pro-

ose a simple yet effective representation, called hybrid supervec-

or, which combines the outputs from multiple variants of BoVW

rameworks with iDTs. The resulting hybrid supervector effectively

xplores the complementarity of different encoding methods and

reatly enhances the descriptive power for action recognition. As

e shall see in Section 4.7 , this representation will improve the
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Fig. 4. Sample frames from the HMDB51, UCF50 and UCF101 datasets. Note that 

UCF50 is a subset of UCF101. 
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ecognition rate of a single BoVW model and obtain the state-of-

he-art results on the three challenging datasets. 

. Empirical study 

In this section, we describe the detailed experimental settings

nd the empirical study of variants of BoVW and different fusion

ethods. We first introduce the datasets used for evaluation and

heir corresponding experimental setup. We then extensively study

ifferent aspects of BoVW, including pre-processing techniques, en-

oding methods, pooling strategies, and normalization approaches.

fter that, we explore the different choices of fusion methods for

ultiple features. Finally, we compare the performance of our hy-

rid supervector with that of the state-of-the-art methods on three

hallenging datasets. 

.1. Datasets and evaluation protocols 

We conduct experiments on three public datasets; HMDB51

 Kuehne et al., 2011 ), UCF50 ( Reddy and Shah, 2013 ), and UCF101

 Soomro et al., 2012 ). Some examples of video frames are illus-

rated in Fig. 4 . Totally, we work with 26,704 videos in this paper. 

The HMDB51 dataset has 51 action classes with 6766 videos in

otal and each class has more than 100 videos. 2 All the videos are

btained from real world scenarios such as movies and youtube.

he intra-class variation is very high due to many factors, such

s viewpoint, scale, background, illumination etc. Thus, HMDB51 is

 very difficult benchmark for action recognition. There are three
2 http://serre-lab.clps.brown.edu/resources/HMDB/index.htm . 
raining and testing splits released on the website of this dataset.

ollowing ( Kuehne et al., 2011 ), we conduct experiments based on

hese splits and report average accuracy for evaluation. 

The UCF50 dataset has 50 action classes with 6618 videos in

otal, and each action class is divided into 25 groups with at least

00 videos for each class. The video clips in the same group are

sually with similar background. We choose the suggested evalua-

ion protocols of Leave One Group Out cross validation (LOGO) and

eport the average accuracy ( Reddy and Shah, 2013 ). 

The UCF101 dataset is an extension of the UCF50 dataset and

as 101 action classes. The action classes can be divided into five

ypes: human-object interaction, body-motion only, human-human

nteraction, playing musical instruments, and sports. Totally, it has

3,320 video clips, with fixed frame rate and resolution as 25 FPS

nd 320 × 240, respectively. To our best knowledge, this dataset

as been the largest dataset so far. We perform evaluation accord-

ng to the three train/test splits as in Soomro et al. (2012) and re-

ort the mean average accuracy of these splits. 

In our evaluation experiment, we choose linear Support Vector

achine (SVM) as our recognition classifier. Specifically, we use the

mplementation of LIBSVM ( Chang and Lin, 2011 ). For multiclass

lassification, we adopt one-vs-all training scheme and choose the

rediction with highest score as our predicted label. 

.2. Local features and codebook generation 

In our evaluation, we choose two widely-used local features,

amely STIPs ( Laptev, 2005 ) with HOG, HOF descriptors ( Laptev

t al., 2008 ), and improved Dense Trajectories (iDTs) with HOG,

OF, MBHx, MBHy descriptors ( Wang et al., 2013a ). Specifically,

e use the implementation released on the website of Laptev 3 for

TIPs and Wang 4 for iDTs. We choose the default parameter set-

ings for both local features. STIPs and iDTs represent two types of

ocal features: sparse interest points and densely-sampled trajec-

ories. They may exhibit different properties with varying BoVW

ettings, and thus it is well worth exploring both STIPs and iDTs. 

Regarding codebook generation, we randomly sample 10 0, 0 0 0

eatures to conduct k -means, where codebook sizes range from

0 0 0 to 10,0 0 0 for STIPs, and from 10 0 0 to 20,0 0 0 for iDTs. For

MM training, we randomly sample 256,0 0 0 features to learn

MMs with mixture number ranging from 16 to 512 for both STIPs

nd iDTs. 

.3. Importance of pre-processing 

In this section, we explore the importance of pre-processing in

oVW framework. Specifically, we use STIPs as local features and

hoose a representative method for each type of encoding, namely

V, LLC, and VQ . For pooling and normalization strategy, we use

um pooling and power � 2 -normalization. We use the descriptor-

evel fusion method to combine HOG and HOF descriptors. 

We conduct experiments on the UCF101 dataset and investi-

ate the importance of pre-processing for these encoding methods.

ith pre-processing step, the descriptors of STIPs are firstly re-

uced to 100-dimension and then whitened to have unit variance.

he results are shown in Fig. 5 . We observe that the pre-processing

echnique of PCA-Whiten is very important to boost the perfor-

ance of encoding methods. Surprisingly, the performance of FV

state-of-the-art) without PCA-Whiten is lower than or compara-

le to VQ and LLC with PCA-Whiten. In previous research work,

CA-Whiten is often done for FV encoding methods but seldom

sed for other encoding methods. Our study suggests that using
3 http://www.di.ens.fr/ ∼laptev/download.html . 
4 https://lear.inrialpes.fr/people/wang/improved _ trajectories . 

http://serre-lab.clps.brown.edu/resources/HMDB/index.htm
http://www.di.ens.fr/~laptev/download.html
https://lear.inrialpes.fr/people/wang/improved_trajectories
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Fig. 5. Comparison the results with and without PCA-Whiten of different encoding methods on the UCF101 dataset, where STIPs are chosen as the local features. 
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PCA-Whiten techniques enable us to greatly improve final recogni-

tion rate for all encoding methods. We obtain the recognition rate

56.1% for VQ. This significantly outperforms over the result 43.9%

reported in Soomro et al. (2012) , where the same local feature and

encoding method is used. We do also evaluate the pre-processing

step for the iDT features, the other encoding, pooling, normaliza-

tion, and fusion methods, which show same observations. These

observations indicate that handcrafted local features are usually

noisy and keeping a part of principal components is helpful for

subsequent processing. 

In the remaining part of the evaluation, we use PCA-Whiten for

all cases. We will remove the suffix “(PCA-Whiten)” for concise-

ness. For descriptor level fusion of STIP, the dimension of concate-

nated descriptor is reduced from 162 to 100. For HOG and HOF,

the dimension is reduced from 72 to 40, and from 90 to 60, re-

spectively. For descriptor level fusion of iDT, the dimension of con-

catenated descriptor is reduced from 396 to 200. For separate de-

scriptor, the dimensions of HOG, MBHx, and MBHy are all reduced

from 96 to 48. HOF descriptor is reduced from 108 to 54. 

4.4. Exploration of encoding methods 

In this section, we compare and analyze the performance of

different encoding methods. For each encoding method, we fix

other settings, such as parameter setting, pooling and normaliza-

tion strategy, the same with previous papers. We explore these

encoding methods with descriptor level fusion, for both STIPs and

iDTs. The influence of different pooling and normalization strategy,

and fusion methods will be investigated in the following sections. 

4.4.1. Encoding methods selection and setting 

We select six popular encoding methods according to the cat-

egorization in Table 1 . For voting based encoding methods, we

choose VQ as a baseline and SA- k as a representative method.
LC is selected as the representative of reconstruction-based en-

oding methods due to its computational efficiency and perfor-

ance ( Wang et al., 2012 ). Supervector based encoding methods

ave shown the state-of-the-art performance on several datasets

 Wang and Schmid, 2013a ) . We choose three supervector based

ncoding methods for evaluation, namely FV, VLAD, and SVC. 

Baseline: Vector Quantization Encoding (VQ). In the baseline

ethod, each descriptor is quantized into a single codeword. Fol-

owing the suggested settings in object recognition ( Zhang et al.,

007 ), the final histogram is obtained by sum pooling and normal-

zed with � 1 norm. 

Localized Soft Assignment Encoding (SA-k). In the localized soft

ssignment, each descriptor is assigned to its corresponding k

earest neighborhood. It requires a single parameter β , which is

he smoothing factor controlling the softness. According to Liu

t al. (2011) , we set β as 1 and k as 5 in our evaluation. We use

ax pooling and � 2 -normalization. 

Locality-constrained Linear Encoding (LLC). Following Wang et al.

2010) , we use approximated LLC for fast encoding, where we sim-

ly use k nearest neighborhood of descriptor as the local bases.

he parameter of k is set as 5, and we choose max pooling and

 2 -normalization strategy. 

Fisher Vector (FV). For GMM training, we use the k -means result

o initialize iteration and the covariance matrix of each mixture is

et as a diagonal one. Following Perronnin et al. (2010) , we use

um pooling and power � 2 -normalization. 

Vector of Locally Aggregated Vector (VLAD). VLAD was originally

esigned for image retrieval in Jégou et al. (2012) and can be

iewed as a simplified version FV for fast implementation. Just like

V, we choose sum pooling and power � 2 -normalization. 

Super Vector Coding (SVC). From the view of statistics, SVC can

e viewed as a combination of VQ and VLAD. It contains the ze-

os and first-order statistics, and the parameter α keeps balance

etween these two components. Following Zhou et al. (2010) , we
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(e) UCF101 with STIPs
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Fig. 6. Performance of different encoding methods with varying codebook (GMM) sizes on the HMDB51, UCF50, and UCF101 datasets for STIPs and iDTs features using 

descriptor-level fusion. 
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et α as 0.1. Like other supervector based encoding methods, we

hoose sum pooling and power � 2 -normalization. 

Results and analysis. The experimental results of STIPs and

DTs on the three datasets are shown in Fig. 6 . Several rules can

e found from these experimental results: 

• Basically, the recognition performance of all selected encoding

methods increases as the size of codebook (GMM) becomes

larger, and it reaches a plateau when the size exceeds a thresh-

old. For supervector based encoding methods, the performances

reach a saturation when the size of codebook (GMM) becomes

256 for both STIPs and iDTs. There is a slight change of the

recognition rate when GMM size grows from 256 to 512. For
the other two types of encoding methods, the performances are

saturated as the size of codebook reaches 80 0 0. We also notice

that these encoding methods using iDTs have slight improve-

ments when the codebook size varies from 80 0 0 to 20,0 0 0,

while the performances using STIPs start shaking when the

codebook size becomes larger than 80 0 0 due to the over-fitting

effect. This difference may be ascribed to the dimension of lo-

cal descriptors and sampling strategy. The descriptors’ dimen-

sion of iDTs is twice of STIPs’ and requires more codewords to

divide the feature space. Meanwhile, STIPs are a set of inter-

est points and the extracted descriptors distribute sparsely in

the feature space. The codebook with large size will result in

an over-partition of feature space, which means for a specific
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5 The Matlab and Python code are publicly available at http://xjpeng.weebly.com/ 

software.html . 
video, there may be no descriptors falling into the correspond-

ing regions for some codewords. iDTs are more densely sam-

pled features and codebook with large size is more suitable to

divide the space of dense features. Above all, for a good balance

between performance and efficiency, sizes of 256 and 80 0 0 are

good choices for supervector based encoding and other encod-

ing respectively. 
• For local features of both SITPs and iDTs, supervector based en-

coding methods outperform the other types of encoding meth-

ods on the three datasets. According to previous introduction,

these supervector encoding methods not only preserve the af-

filiations of descriptors to codewords, but also keep high or-

der information such as the difference of means and variances.

These high order information enables the encoding methods to

better capture the distribution shape of descriptor in feature

space. In these supervector based methods, FV is typically bet-

ter than VLAD and SVC, whose performance is quite similar.

This can be due to two facts: (i) FV keeps both first order and

second order statistics, which is more informative than VLAD

(only first statistics) and SVC ( 0 th statistics and first statistics).

(ii) FV is based on GMM and each descriptor is softly assigned

to codewords using posterior probability, while VLAD and SVC

are based on k -means results and use hard assignment. We also

notice that the difference between FV and the other two meth-

ods (VLAD, SVC) for iDTs seems smaller than STIPs. The more

dense descriptors may make the learned codebook more sta-

ble for SVC and VLAD, and reduce the influence of soft assign-

ment in FV. Meanwhile, the information contained in second

statistics may be less complementary to first statistics for iDTs.

In conclusion, supervector based representation, via aggregat-

ing high order information, is a more suitable choice for good

performance, when the high dimension of representation is ac-

ceptable. 
• For reconstruction based and voting based encoding methods,

VQ reaches the lowest recognition rate for STIPs and iDTs on

the three datasets. This can be ascribed to the hard assign-

ment and descriptor ambiguity in the VQ method. In essence,

the LLC and SA- k are quite similar in spirt, for that they both

consider locality when mapping descriptor into codeword. The

performance of LLC is better than SA- k for STIPs, while the per-

formances of them are almost the same for iDTs. This can be

explained by the mapping strategy in LLC and SA- k . The map-

pings of a descriptor to the k nearest codewords in LLC are de-

termined jointly according to their effect in minimizing the re-

construction error, while the mappings in SA- k are calculated

independently for each individual codeword according to the

Euclidean distance. The mapping method in LLC may be more

effective to deal with manifold structure than just considering

Euclidean distance in SA- k . For sparse features such as STIPs,

the descriptors distribute sparsely around each codeword, and

using Euclidean distance may introduce noise and instability for

SA- k . For dense features such as iDTs, the descriptors are usu-

ally sampled densely and more compact around codewords. As

a result, they can reduce the influence caused by the usage of

Euclidean distance. In a word, compared with hard assignment,

locality and soft assignment is an effective strategy to improve

the performance of encoding methods. 
• STIPs and iDTs represent two types of local features, namely

sparsely-sampled and densely-sampled features. In general,

they exhibit consistent performance trends for different en-

coding methods. For example, supervector encoding methods

outperform others, and soft-assignment is better than hard-

assignment. However, there is a slight difference between

them in some aspects, such as sensitivity to codebook size

and encoding methods, performance gaps among supervector

based methods, difference between LLC and SA- k , as previ-
ously observed. From the perspective of data manifold, the

more densely-sampled features can help us more accurately de-

scribe the data structure in the feature space. We can obtain

a more compact clustering result using k -means, and the local

Euclidean distance is more stable. Thus, when choosing code-

book size and encoding method, the type of local feature can

be a factor needed to be considered. 

.4.2. Computational costs 

We also compare the efficiency of different encoding methods.

he running time is shown in Fig. 7 . Our codes are all implemented

n Matlab, 5 and run on a workstation with 2 × Intel Xeon 5560 2.8

Hz CPU and 32 G RAM. We randomly sample 50 videos from the

CF101 dataset and report the total time for these videos. For su-

ervector based methods, FV is much slower due to the calculation

f posterior probability during encoding, and the time of VLAD and

VC is almost the same. For the other types of encoding meth-

ds, LLC is less efficient as it solves a least square problem. The

omputational cost of supervector encoding methods are usually

ower than that of the other types of encoding methods, due to

heir smaller codebook sizes. 

Based on the above analysis, supervector based encoding meth-

ds are more promising for high performance and fast implemen-

ation, especially for SVC, and VLAD. However, the feature dimen-

ion of supervector methods is much higher than the other two

inds of encoding methods, for example, when the codebook size

s 256, the dimension of FV and VLAD is 102,400 and 51,200 re-

pectively for iDT features. The effective dimension reduction may

e a future research direction for supervector encoding methods. 

.5. Exploration of pooling and normalization 

In this section, we mainly investigate the influence on recogni-

ion rate for different pooling and normalization strategies on the

CF101 dataset. Based on the performances of different encoding

ethods on the UCF101 dataset in previous section, we choose the

odebook (GMM) size as 512 for supervector based methods and

odebook size as 80 0 0 for the other two types of encoding ap-

roaches. Meanwhile, according to our conclusion that supervector

ased encoding is a promising method and soft assignment is an

ffective way to improve the encoding methods, we extend VLAD

o VLAD- k and VLAD- all , SVC to SVC- k and SVC- all as described in

ection 2.4.4 . Thus, there are totally 10 kinds of encoding methods.

For supervector based encoding methods, we evaluate eight

ormalization methods, specified by with or without intra-

ormalization, with or without power operation, and final � 1 
r � 2 normalization. For the other two types of encoding

ethods, we choose two pooling methods, namely max pool-

ng and sum pooling, and four normalization methods, namely

 1 -normalization, � 2 -normalization, power � 1 -normalization, and

ower � 2 -normalization. In our evaluation, the parameter α in

ower normalization is set as 0.5. 

The experimental results are shown in Figs. 8 and 9 . Several

bservations can be concluded from these results: 

• For supervector based encoding methods, intra-normalization

is an effective way to balance the weight of different code-

words and suppress the burst of features corresponding to

background. We found this technique works very well when

dense features are chosen. A large number of features in iDTs

are irrelevant with the action class and intra-normalization can

suppress this influence. However, for sparse features, the effect

http://xjpeng.weebly.com/software.html
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Fig. 7. Average time of different encoding methods with varying codebook (GMM) sizes on the UCF101 datasets for STIPs and iDTs features using descriptor-level fusion. 

Fig. 8. Comparison of different pooling-normalization strategies with STIPs features using descriptor level fusion on the UCF101 dataset. Note that there is only max pooling 

for voting and reconstruction based encoding methods, and there is only intra normalization for supervector based encoding methods. 

Fig. 9. Comparison of different pooling-normalization strategies with iDTs features using descriptor level fusion on the UCF101 dataset. Note that there is only max pooling 

for voting and reconstruction based encoding methods, and there is only intra normalization for supervector based encoding methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of intra normalization is not so evident, and even cause per-

formance degradation in the case of hard assignment such as

VLAD and SVC. We ascribe this phenomenon to the fact that the

STIPs features are usually located in the moving foreground and

related with action class. Thus, these descriptors only vote for

a subset of codewords, that are highly related with action class.

In this case, intra-normalization can decrease the discrimina-

tive power of action-related codewords and increase the influ-

ence of irrelevant codewords. In conclusion, intra-normalization

is effective in handling burst of irrelevant features in the case

of dense-sampling strategy. 
• For different encoding methods and local features, we observe

that the final � 2 -normalization outperforms � 1 -normalization.

In fact, the normalization method is related to kernel used in

final classifier. In our case of linear SVM, the kernel is k (x , y ) =
x � y . The choice of � 2 -normalization can ensure two things: (i)

k (x , x ) = const . ; (ii) k ( x, x ) ≥ k ( x, y ). This can guarantee a sim-

ple consistency criterion by interpreting k ( x, y ) as a similar-

ity score, x should be the most similar point to itself ( Vedaldi

and Zisserman, 2012 ). However, the choice of � 1 -normalization

can not make sure that the point is most similar to itself

and may cause the instability during SVM training. Above all,
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� 2 -normalization generally outperforms � 1 -normalization when

using linear SVM. 
• The influence of power operation in normalization is highly re-

lated to pooling methods. We observe that power normaliza-

tion is an effective approach to boost the performance of rep-

resentation obtained from sum pooling, such as supervector

based representation, LLC, and SA- k with sum pooling. How-

ever, power normalization has little effect for max pooling and

sometimes even causes the performance degradation for LLC,

SA- k . The operation of power usually reduces the difference be-

tween different codewords, which means smoothing the his-

togram. This smooth effect can reduce the influence of high

frequent codeword on the kernel calculation and improve the

influence of less frequent codeword. For sum pooling, the re-

sulting histogram is usually very sharp and unbalanced due to

feature burst, and the smooth operation has a positive effect for

suppress the high frequent codeword. However, for max pool-

ing, the histogram is itself not so sharp as sum pooling, and

thus the power normalization may have a side effect. In above,

power operation is an effective strategy to smooth the result-

ing histogram and can greatly improve the performance of sum

pooling representation. 
• Among different choices of pooling operations and normaliza-

tion methods, we conclude that sum pooling and power � 2 -

normalization is the best combination. For dense features, in-

tra normalization is an extra bonus for performance boost-

ing. For sparse features, intra normalization sometimes may

have a negative effect. The success of sum pooling and power

� 2 -normalization can be explained by the Hellinger’s kernel

Vedaldi and Zisserman (2012) , which has turned out to be an

effective kernel to calculate the similarity between two his-

tograms. The linear kernel calculation in the feature space

resulting from power � 2 -normalization is equivalent to the

Hellinger’s kernel calculation in the original space just using � 1 
normalization: 

< 

√ 

x 

‖ 

√ 

x ‖ 2 

, 

√ 

y 

‖ 

√ 

y ‖ 2 

> = < 

√ 

x 

‖ x ‖ 1 

, 

√ 

y 

‖ y ‖ 1 

>, (34)

which means power � 2 -normalization explicitly introduces non-

linear kernel in the final classifier. In a word, sum pooling and

power � 2 -normalization is an effective and efficient way to en-

able linear SVM to have the power of non-linear classifier and

boost final recognition rate. 

In conclusion, pooling and normalization is a crucial step in

the pipeline of a BoVW framework, whose importance may not

be highlighted in previous research work. Proper choice of pool-

ing and normalization strategy may largely reduce the performance

gap of different encoding methods. For sum pooling and power � 2 -

normalization, which is the best combination in all these possi-

ble choices, the performances of LLC, SA- k , and VQ are comparable

to each other for iDTs features. Adding intra-normalization after

power operation boosts performance for supervector based encod-

ing methods with iDTs features. 

4.6. Exploration of fusion methods 

The local features usually have multiple descriptors, such as

HOG, HOF, MBHx, and MBHy, each of which corresponds to a

specific view of video data. For the empirical study in previous

section, we choose a simple method to combine these multiple

descriptors, where we just concatenate them into a single one,

namely descriptor level fusion. In this section, we mainly analyze

the influence of different fusion methods on final recognition per-

formance. 
For encoding methods, we choose the same ten approaches as

n previous section. The codebook size of supervector based meth-

ds is set as 512 and the one of other encoding methods is set as

0 0 0. For pooling and normalization methods, we use sum pool-

ng and power � 2 -normalization, according to the observations in

ection 4.5 . We also apply intra-normalization after power opera-

ion for supervector based encoding methods with iDTs features which

hows better results than only using power � 2 normalization (see

ig. 9 ). For fusion methods, we evaluate three kinds of meth-

ds, namely descriptor level fusion, representation level fusion, and

core level fusion, as described in Section 3 . For score level fusion,

e use the geometrical mean to combine the scores from multiple

VMs. 

The experimental results on three datasets are shown in

ables 2 , 3 , and 4 . From these results, we observe several trends: 

• For iDTs features, representation level fusion is the best

choice for all of the selected encoding methods on the three

datasets . This result indicates that these multiple descriptors

are most correlated in the video level. Descriptor level fusion

emphasizes the dependance in cuboid and results in high di-

mension features for codebook training and encoding. This may

make these unsupervised learning algorithm unstable. 
• For STIPs features, representation level fusion is more ef-

fective for reconstruction based and voting based encoding

methods . For supervector based encoding methods, the perfor-

mance of representative level fusion is comparable to that of

descriptor level fusion. This trend is consistent with the finds

with iDTs features. 
• For both features, SA- k , LLC, and VQ encoding methods are

much more sensitive to fusion methods than those super-

vector based encoding methods . Great improvement can be

obtained for SA- k , LLC, and VQ by using representation level

fusion, but slight improvements happen to those supervector

methods. We analyze that this is due to two facts. Firstly, for

reconstruction and voting based encoding methods, the final

dimension of representation level fusion is M (the number of

descriptors) times of the dimension of descriptor level fusion.

However, for supervector based encoding methods, the dimen-

sion of descriptor level fusion is the same with representation

level fusion. The higher dimension of final representation may

enable SVM to classify more easily. Secondly, the codebook size

K of supervector methods is much smaller than that of other

types of encoding methods, where clustering algorithm may be

more stable for high dimensionality in descriptor level fusion

method. 

Based on the above observation and analysis, we conclude that

usion method is a very important component for handling com-

ination of multiple descriptors in the action recognition system.

epresentation level fusion method is a suitable choice for differ-

nt kinds of encoding methods due to its good performance. From

ur analysis, we know that the performance boosting of fusing

ultiple features mainly possesses the complementarity of these

eatures. This complementarity may be not limited to the explo-

ation of different descriptors, but also can be extended to the

ifferent BoVWs. From the perspective of statistics, FV aggregates

nformation using first and second order statistics, while SVC is

bout zero and first order statistics. Intuitively, these two kinds of

upervector encoding methods are complementary to each other.

hus, we present a new feature representation, called Hybrid Su-

ervector (HSV). HSV combines the outputs FV and soft version

VC of multiple descriptors, including HOG, HOF, MBHx, and MBHy.

his representation is simple but proved to be effective in next sec-

ion. 
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Table 2 

Comparison of different fusion methods for the encoding methods on the HMDB51 dataset. 

Methods FV SVC SVC- k SVC- all VLAD VLAD- k VLAD- all LLC SA- k VQ 

Space Time Interest Points (STIPs) 

HOG 22.81 17.76 21.09 21.87 18.13 19.87 20.04 20.46 18.39 16.10 

HOF 31.96 30.44 32.68 33.36 30.46 31.53 31.55 27.19 26.27 24.49 

d-Fusion 38.82 35.12 36.64 37.19 34.81 36.18 36.23 29.87 28.13 25.66 

r-Fusion 37.32 34.36 36.73 37.19 34.23 35.84 35.88 33.44 32.59 30.35 

s-Fusion 36.71 32.14 34.51 34.99 32.11 33.90 34.01 32.52 30.96 27.54 

Improved Dense Trajectories (iDTs) 

HOG 45.12 36.93 39.32 38.10 36.93 39.30 37.08 37.08 35.45 34.81 

HOF 50.70 47.70 49.00 48.00 47.70 49.00 45.80 42.20 42.70 42.10 

MBHx 44.14 39.35 43.01 41.68 39.43 43.03 41.55 35.51 35.51 34.6 

MBHy 50.04 44.25 47.02 46.51 44.27 47.02 44.68 40.39 40.35 39.78 

d-Fusion 58.37 54.12 56.82 56.86 54.2 56.88 54.73 48.25 48.58 47.93 

r-Fusion 60.22 58.19 60.09 60.07 58.26 60.09 58.58 55.45 55.8 55.27 

s-Fusion 59.62 57.27 59.11 58.78 57.14 59.17 57.54 53.68 53.94 53.27 

Table 3 

Comparison of different fusion methods for the encoding methods on the UCF50 dataset. 

Methods FV SVC SVC- k SVC- all VLAD VLAD- k VLAD- all LLC SA- k VQ 

Space Time Interest Points (STIPs) 

HOG 66.20 60.76 63.98 63.94 60.22 62.32 62.22 60.42 59.11 56.21 

HOF 73.10 71.93 74.14 74.56 71.30 72.36 72.51 64.72 63.80 61.55 

d-Fusion 78.32 76.33 77.60 77.59 75.57 76.06 76.13 70.13 68.66 67.16 

r-Fusion 77.21 76.07 78.42 78.91 75.36 75.95 75.99 74.05 73.67 71.95 

s-Fusion 76.33 76.19 77.76 77.25 73.79 74.91 74.98 72.95 71.66 69.16 

Improved Dense Trajectories (iDTs) 

HOG 84.39 78.22 80.29 79.97 78.19 80.20 78.33 72.73 73.76 74.27 

HOF 86.33 85.18 85.92 84.94 85.15 85.87 83.48 80.23 80.58 80.29 

MBHx 84.03 81.33 83.19 82.46 81.28 83.12 81.16 77.77 77.91 77.04 

MBHy 87.02 84.64 86.38 85.29 84.60 86.32 84.04 80.36 80.6 80.3 

d-Fusion 90.84 89.39 90.72 90.62 89.43 90.64 90.18 84.18 84.76 84.67 

r-Fusion 92.07 90.87 91.89 91.50 90.82 91.80 90.56 87.56 87.92 88.12 

s-Fusion 91.03 90.08 90.71 90.36 90.11 90.63 89.67 87.37 87.86 87.41 

Table 4 

Comparison of different fusion methods for the encoding methods on the UCF101 dataset. 

Methods FV SVC SVC- k SVC- all VLAD VLAD- k VLAD- all LLC SA- k VQ 

Space Time Interest Points (STIPs) 

HOG 53.74 47.56 50.07 50.31 47.15 49.21 49.35 46.70 45.79 42.85 

HOF 62.89 60.57 63.81 64.02 60.04 61.73 61.60 54.16 52.78 50.04 

d-Fusion 69.90 66.43 68.22 68.40 65.42 66.42 66.46 59.52 57.83 56.09 

r-Fusion 68.21 65.39 69.00 69.18 65.39 66.13 66.19 63.04 62.13 59.31 

s-Fusion 66.77 62.50 65.81 65.98 62.17 63.97 64.15 60.94 59.48 56.69 

Improved Dense Trajectories (iDTs) 

HOG 74.79 69.74 72.14 72.36 69.66 71.65 71.39 65.46 65.81 65.40 

HOF 78.63 76.26 77.70 77.12 76.28 77.76 76.35 71.03 71.14 70.57 

MBHx 76.82 71.63 74.24 73.92 71.62 74.11 71.84 67.00 67.55 66.43 

MBHy 79.15 74.53 77.46 76.82 74.54 76.78 74.21 69.6 69.67 68.50 

d-Fusion 85.32 83.36 85.19 85.17 83.39 85.14 85.45 77.65 77.96 76.76 

r-Fusion 87.11 84.87 86.54 86.19 84.90 86.16 85.59 81.43 81.65 81.37 

s-Fusion 85.49 83.34 84.84 84.57 83.29 85.04 83.83 80.11 80.39 79.81 
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.7. Comparison 

In this section, we demonstrate the effectiveness of our pro-

osed HSV according to our previous insightful analysis. Specifi-

ally, we choose two supervector based encoding methods, namely

VC- k and FV, for iDTs features. We use the power operation and

hen intra � 2 -normalization. For feature fusion, we adopt the rep-

esentation level fusion method. We also try spatial-temporal pyra-

id (STP) with k × k × l cells where k ∈ (1, 2) and l = 2 as sug-

ested in Lan and Hauptmann (2015) . 

Table 5 shows our final recognition rates and compares our re-

ults to that of state-of-the-art approaches. The best results we ob-

ained are 61.9%, 87.9%, and 92.3% for HMDB51, UCF101, and UCF50,
espectively. Spatial-temporal pyramid slightly improves the result

f HMDB51 dataset by our experimental study. The main reason

ay be that there are no fixed spatial-temporal layouts for ac-

ions in videos especially for those from Youtube (i.e., UCF101 and

CF50). Given traditional BoVW pipeline and iDTs, our results out-

erform the best result ( Wang and Schmid, 2013a ) by 3.9%, 2%, and

% respectively. Peng et al. (2014b ) proposed a stacked FVs (from

ocal large volumes) and got the state of the art by combining with

he traditional Fisher vectors but their stacked FVs is very high in

omputational cost. The last three rows in Table 5 present those

ethods based on convolutional neural networks (CNN). Among

hem, Wang et al. (2015) applied a trajectory-based pooling strat-
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Table 5 

Comparison our hybrid supervector with the sate-of-the-art methods. 

HMDB51 % UCF101 % UCF50 % 

Kuehne et al. (2011) 23.0 Soomro et al. (2012) 43.9 Sadanand and Corso (2012) 57.9 

Kliper-Gross et al. (2012) 29.2 Cai et al. (2014) 83.5 Solmaz et al. (2013) 73.7 

Jiang et al. (2012) 40.7 Wu et al. (2014) 84.2 Reddy and Shah (2013) 76.9 

Wang et al. (2013c ) 42.1 Peng et al. (2013) 84.2 Wang et al. (2013c ) 78.4 

Wang et al. (2013a ) 46.6 Murthy and Goecke (2013) 85.4 Wang et al. (2013a ) 84.5 

Peng et al. 49.2 Karaman et al. (2013) 85.7 Wang et al. (2013b ) 85.7 

Wang and Schmid (2013a ) 57.2 Wang and Schmid (2013b ) 85.9 Wang and Schmid (2013a ) 91.1 

Peng et al. (2014b ) 66.8 

Our HSV 61.1 Our HSV 87.9 Our HSV 92.3 

Our HSV+STP 61.9 Our HSV+STP 87.2 Our HSV+STP 92.1 

Methods with CNN features 

Simonyan and Zisserman (2014) 59.4 Simonyan and Zisserman (2014) 88.0 

Wang et al. (2015) 65.9 Wang et al. (2015) 91.5 

Sun et al. (2015) 59.1 Karpathy et al. (2014) 63.3 
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egy for CNN features which provides the state of the arts on both

HMDB51 and UCF101 datasets. 

5. Conclusion 

In this paper, we have comprehensively studied each step in the

BoVW pipeline and tried to uncover good practices to build an effi-

cient action recognition system. Specifically, we mainly explore five

aspects, namely local features, pre-processing techniques, encod-

ing methods, pooling and normalization strategy, fusion methods.

From our extensive study of different components in the BoVW

pipeline, a number of good practices can be concluded as follows: 

• iDTs with more descriptors are more informative than STIPs

in capturing the content of video data and suitable for action

recognition. Meanwhile, iDTs exhibit different properties with

STIPs w.r.t variations of BoVW such as codebook size and en-

coding methods. 
• Data pre-processing is an important step in a BoVW pipeline

and able to greatly improve the final recognition performance. 
• Basically, the high dimensional representation of supervector

based methods makes it more effective and efficient than vot-

ing based and reconstruction based encoding methods. 
• Pooling and normalization is a crucial step in BoVW, whose im-

portance may not be highlighted in previous studies. Sum pool-

ing with power � 2 -normalization is the best choice during all

the possible combinations, and we provide theoretical evidence

in the paper. Adding intra-normalization after power operation

boosts performance for supervector based encoding methods

with iDTs. 
• In above, every step is crucial for contributing to the final

recognition rate. Improper choice in one of the steps may coun-

teract the performance improvement of other steps. 

Finally, based on the insights from our comprehensive study, we

propose a simple yet effective representation, called hybrid super-

vector which outperforms the other traditional BoVW pipelines. 
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