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Abstract

Deep ConvNets have been shown to be effective for the

task of human pose estimation from single images. How-

ever, several challenging issues arise in the video-based

case such as self-occlusion, motion blur, and uncommon

poses with few or no examples in the training data. Tem-

poral information can provide additional cues about the

location of body joints and help to alleviate these issues.

In this paper, we propose a deep structured model to esti-

mate a sequence of human poses in unconstrained videos.

This model can be efficiently trained in an end-to-end man-

ner and is capable of representing the appearance of body

joints and their spatio-temporal relationships simultane-

ously. Domain knowledge about the human body is explic-

itly incorporated into the network providing effective priors

to regularize the skeletal structure and to enforce temporal

consistency. The proposed end-to-end architecture is eval-

uated on two widely used benchmarks for video-based pose

estimation (Penn Action and JHMDB datasets). Our ap-

proach outperforms several state-of-the-art methods. 1

1. Introduction

Estimating human poses is one of the core problems

in computer vision and has many applications in the life-

sciences, computer animation and the growing fields of

robotics, augmented and virtual reality. Accurate pose es-

timates can also drastically improve the performance of

activity recognition and high-level analysis of videos (cf.

[14, 34, 36]). Recent pose estimation methods have ex-

ploited deep convolutional networks (ConvNets) for body-

part detection in single, fully unconstrained images [2, 17,

18, 22, 31, 32, 35]. While demonstrating the feasibility of

detection-based pose estimation from images taken under

general conditions, such methods still struggle with sev-

eral challenging aspects including the diversity of human

appearance and self-symmetries. Several methods [2, 37]

have explicitly incorporated geometric constraints among

body parts into such frameworks, ensuring spatial consis-

1Code and models are available at https://github.com/

JieSong89/thin-slicing-network.

Figure 1. Our method incorporates spatio-temporal information

into a single end-to-end trainable network architecture, aiming to

deal with challenging problems such as (self-)occlusions, motion

blur, and uncommon poses. Taking fully unconstraind images as

input (a), we regress body-part locations with standard ConvNet

layers (b). Spatial inference helps in overcoming confusion due to

symmetric body parts (c). Our spatio-temporal inference layer (d)

can deal with extreme cases where spatial information only fails

(cf. 11 vs 12, 15 vs 16) and improves prediction accuracies for

unary terms due to repeating measurements by temporal propaga-

tion of joint position estimates (3 vs 4).

tency and penalizing physically impossible solutions (cf.

Figure 1, (c)).

In this paper we consider the comparatively less stud-

ied problem of human pose estimation from unconstrained

videos [11, 20, 39, 42]. While inheriting many properties

from image-based pose estimation, it also brings new chal-

lenges. In particular, unconstrained videos such as those

found in online portals, contain many frames with occlu-

sions, unusual poses, and motion blur (see Figure 1). These

issues continue to limit the accuracy of joint detection even

if taking priors about the spatial configuration of the human

skeleton into consideration, and often result in visible jitter

if such models are applied directly to video sequences.

To tackle these problems, we propose to incorporate spa-
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tial and temporal modeling into deep learning architectures.

The proposed model is based on a simple observation: hu-

man motion exhibits high temporal consistency, which may

be captured by optical flow warping [20, 39, 42] and spatio-

temporal inference [34, 36]. Specifically, we incorporate

a spatio-temporal relational model into the ConvNet and

develop a new deep structured architecture which we call

Thin-Slicing Network. Our model allows for end-to-end

training of body part regressors and spatio-temporal rela-

tional models in a unified framework. This improves gen-

eralization capabilities by regularizing the learning process

both spatially and temporally. We deploy a fully ConvNet

for initial part detection. A flow warping layer propagates

joint prediction heat maps temporally and a novel infer-

ence layer, performing message passing on arbitrary loopy

graphs along both spatial and temporal edges, is introduced.

In consequence, our approach can deal with many chal-

lenging situations arising in unconstrained video, and out-

performs both pure joint-position estimation methods and

those incorporating spatial priors only. Figure 1 illustrates

how our approach can accurately predict joint positions in

difficult situations of full occlusion (3rd row, given visibil-

ity in adjacent frames) or severe motion blur (4th row, by

exploiting temporal consistency). Last but not least, the

model also improves predictions in relatively simple cases

(see Figure 1, 1st and 2nd row). This can be explained

by optimizing of several correlated but different frames

through the entire architecture jointly, which not only learns

weights of the inference layers, but also refines the underly-

ing ConvNet-based part regressors, resulting in more accu-

rate joint detections.

In summary our main contributions are: (i) A structured

model captures the inherent consistency of human poses in

video sequences based on a loopy spatio-temporal graph.

Our approach does not rely on explicit human motion priors

but leverages dense optical flow to exploit image evidence

from adjacent frames. (ii) An efficient and flexible infer-

ence layer performs message passing along the spatial and

temporal graph edges and significantly reduces joint posi-

tion uncertainty. (iii) The entire architecture integrates a

ConvNet-based joint regressors and a high-level structured

inference model in a unified framework which can be op-

timized in an end-to-end manner. (iv) Our method signif-

icantly improves the state-of-the-art performance on two

widely used video based pose estimation benchmarks: the

Penn Action dataset [40] and the JHMDB dataset [14].

2. Related work

Pose estimation from single images has benefitted

tremendously from leveraging structural models such as

tree-structured pictorial models [1] and part-based mod-

els [15, 21, 23, 38], encoding the relationships between

articulated joints. While capturing kinematic correlations,

such models are prone to errors such as double-counting

part evidence. More expressive loopy graph models, al-

lowing for cyclic joint dependencies have been proposed

to better capture symmetry and long-range correlation [5,

25, 28, 30]. Since exact inference in cyclic graphs is gen-

erally speaking intractable, approximate inference methods

like loopy belief propagation are typically used.

The above methods are based on hand-crafted features

and are sensitive to (the limits of) their representative power.

More recently, convolutional deep learning architectures

have been deployed to learn richer and more expressive fea-

tures directly from data [2, 18, 22, 31, 32], outperforming

prior work. Toshev et al. [32] directly regress the joint coor-

dinates from images. Follow-up work suggests that regress-

ing full image confidence maps as intermediate representa-

tion can be more effective [2, 31]. While multi-stage convo-

lutional operations can capture information in large recep-

tive fields, they still lack the ability to fully model skeletal

structure in their predictions.

Several approaches to refine confidence maps have been

proposed. First, additional convolutional layers taking joint

heat-maps as input can be added to learn implicit spatial

dependencies without requiring explicit articulated human

body priors [4, 31, 35]. Second, [2, 22] explicitly resort

to graphical models to post-process regressed confidence

maps. However, the parameters of part regression networks

and spatial inference are learned independently [2, 22].

In [37] an end-to-end trainable framework, combining con-

volutional operations and spatial refinement is proposed.

Our work not only incorporates spatial information but also

models temporal dependencies.

Pose estimation in videos brings new challenges (illus-

trated in Figure 1) and requires the coupling of parts across

frames to ensure accurate and temporally stable predictions.

Early work initializes a temporal tracker from few pre-

dicted poses in the sequence’s initial frames [27] but suffers

from pose drift. Tracking-by-detection schemes have been

used to more robustly estimate poses in videos [8, 19, 24].

Researchers have also attempted to design spatio-temporal

graphs to capture motion in short video sequences [3, 7,

16, 26, 29, 33, 34, 36, 39]. However, modeling spatial

and temporal dependencies explicitly results in highly inter-

connected models (i.e., loopy graphs with large tree-width)

and exact inference becomes again intractable. One solu-

tion is to resort to approximate inference, for instance using

sampling based approaches [29, 33] or loopy belief prop-

agation [7, 16]. Alternatively, approximating the original

large loopy model into one or multiple simplified tree-based

models allows for efficient exact inference [3, 39].

Some recent deep learning methods aide predictions in

the current frame with information from its neighbors [13].

Similar to our approach, [20] directly propagates joint po-

sition estimates from previous to the current frame via opti-
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Figure 2. Schematic overview of Thin-Slicing Network architecture. Our model takes a small number of adjacent frames as input (a)

and fully convolutional layers (b) regress initial body joint position estimates (c). We compute dense optical flow between neighboring

frames to propagate joint position estimates through time. A flow based warping layer aligns joint heat-maps to the current frame (d). A

spatio-temporal inference layer performs iterative message passing along both spatial and temporal edges of the loopy pose configuration

graph (e) and computes final joint position estimates (f). For convenience of illustration, we only plot one target frame.

cal flow. Warped heatmaps from multiple nearby frames are

combined as weighted average. Chain models [11] can cap-

ture longer temporal dependencies but makes assumptions

about regular motion patterns. Our approach also incorpo-

rates spatio-temporal models into deep ConvNets but dif-

fers in that it (i) explicitly models the spatial configuration

of human poses; (ii) regularizes temporal joint positions us-

ing dense optical flow via (iii) a novel inference layer, per-

forming message passing on general loopy spatio-temporal

graphs; (iv) and is end-to-end trainable.

3. Thin-Slicing Networks

Figure 2 shows an overview of our proposed network

architecture, consisting of several interconnected layers.

Given a thin-slice of a video sequence (i.e., a small num-

ber of adjacent frames), a spatial fully ConvNet first re-

gresses joint confidence maps (heat-maps) of joint positions

for each input frame (Figure 2 (c)). These heat-maps are

sent into a flow warping layer and a spatio-temporal infer-

ence layer. The flow warping layer (Figure 2 (d)) warps the

body part heat-maps via dense optical flow so that they align

with its neighboring frame. Finally, both the warped and the

current frame heat-maps pass through the spatio-temporal

inference layer (Figure 2 (e)). This layer conducts inference

between body parts spatially and temporally, producing the

final joint position estimates (Figure 2 (f)).

3.1. Fully convolutional joint regression layer

Several recent works regress heat-maps of body joints

via ConvNets [2, 18, 22, 31, 35, 17]. Such models usually

consist entirely of convolutional operations combined with

spatial pooling layers. We leverage such a ConvNet [35]

as basis for our architecture. More specifically as joint de-

tection layers shown in Figure 2 (b). Such models have al-

ready demonstrated the ability to capture local appearance

properties and outperform hand-designed shallow features

by large margins, but occlusions, (self-)symmetries and mo-

tion blur still pose significant challenges (cf. Figure 1). In

order to alleviate these problems, a novel spatio-temporal

message passing layer (Sec. 3.3) is proposed and incorpo-

rated into the network for end-to-end training.

3.2. Flow warping layer

While our goal is to improve temporal stability of joint

predictions, we do not incorporate an explicit motion model

(since human motion tends to be too unpredictable) but in-

stead rely on dense optical flow to propagate information

temporally. The joint detection heat-maps, produced by

fully convolutional layers, is passed through the flow warp-

ing layer to align heat-maps from one frame to the targeted

neighbor (Figure 2 (d)). Pixel-wise flow vectors are used

to align confidence estimates in neighboring frames to the

target frame by shifting confidence values along the track

directions. Next, these warped heat-maps serve as input to

the spatio-temporal inference layer.

3.3. Spatiotemporal inference layer

Incorporating domain specific knowledge into deep net-

works has been proven to be effective in many vision

tasks such as object detection [10] and semantic segmenta-

tion [41]. In this work, we propose to explicitly incorporate

spatio-temporal dependencies into an end-to-end trainable

framework.

Modeling

Let G = (V,E) be a graph as shown in Figure 2 (e), with

vertices V and edges E ⊆ V × V denoting the spatio-

temporal structure of a human pose. K = |V | is the number
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of body parts, and i ∈ {1, ...,K} is the ith part. Each ver-

tex corresponds to one of the body parts (i.e., head, shoul-

ders), and each edge represents a connection between two

of these parts spatially (blue arrows in Figure 2 (e)) or be-

tween the same part but distributed temporally (yellow ar-

rows in Figure 2 (e)). We denote these edges as Es and

Ef respectively. Given an image I , a pose p with respect

to this graph G is defined as a set of 2D coordinates in the

image space representing the positions of the different body

parts: p = {pi = (xi, yi) ∈ R
2 : ∀i ∈ V }. The single-

image pose estimation problem then can be formulated as

the maximization of the following score S(I, p) for a pose

p given an image I:

S(I, p) =
∑

i∈V

φi(pi|I) +
∑

(i,j)∈Es

ψi,j(pi, pj), (1)

where φi(pi|I) is the unary term for the body part i at

the position pi in image I and ψi,j(pi, pj) is the pairwise

term modeling the spatial compatibility of two neighbor-

ing parts i and j. The unary term provides confidence val-

ues of part i based on the local appearance and it is mod-

eled by the fully ConvNet (Sec. 3.1). For pairwise term

we use a spring energy model to measure the deformation

cost, where ψi,j(pi, pj) is defined as wi,j · d(pi− pj). With

standard quadratic deformation constraints d(pi − pj) =
[∆x ∆x2 ∆y ∆y2]T , where ∆x = xi−xj and ∆y =
yi−yj are the relative positions of part iwith respect to part

j. The parameter wi,j encodes rest location and rigidity of

each spring, which can be learned from data alongside the

remaining network parameters.

Given a slice of a video sequence I = (I1, I2, ..., IT ) as

shown in Figure 2 (a), the temporal links (yellow arrows in

Figure 2 (e)) are introduced among neighboring frames in

order to impose temporal consistency for estimating poses

P = (p1, p2, ..., pT ). The objective score function of the

entire slice with temporal constrains is then given by:

S(I,P)slice =
T
∑

t=1

S(It, pt) +
∑

(i,i∗)∈Ef

ψi,i∗(pi, p
′

i∗).

(2)

Here S(It, pt) is the score function for each frame as

defined in Eq. (1). The pairwise term ψi,i∗(pi, p
′

i∗) regular-

izes the temporal consistency of the part i in neighboring

frames. Specifically, here p′i∗ = pi∗ + fi∗,i(pi∗) and

fi∗,i(pi∗) is the optical flow evaluated at pi∗ . This term

denotes the flow warping process in which pixel-wise flow

tracks are applied to align confidence values in neighboring

frames to the target frame. We use the same quadratic

spring model as above to penalize the estimation drift

between these neighboring frames.

Inference

Inference corresponds to maximizing Sslice defined

in Eq. (2) over p for the image sequence slice. When the

relational graph G = (V,E) is a tree-structured graph, ex-

act belief propagation can be applied efficiently by one pass

of dynamic programming in polynomial time. However, for

cases in which the factor graph is not tree-structured but

contains cycles, the belief propagation algorithm is not ap-

plicable as no leaf-to-root order can be established. How-

ever, loopy belief propagation algorithms such as the Max-

Sum algorithm make approximate inference possible in in-

tractable loopy models [9]. Empirical performance has con-

sistently been reported to be excellent across various prob-

lems [37, 28]. More precisely, in our case at each iteration

a part i sends a message to its neighbors and also receives

reciprocal messages along the edges in G:

scorei(pi)← φi(pi|I) +
∑

k∈child(i)

mki(pi), (3)

where child(i) is defined as the set of children of part i. The

local scorei(pi) is the sum of the unary terms φi(pi|I) and

the messages collected from its all children. The messages

mki(pi) sent from body part k to part i are given by:

mki(pi)← max
pk

(scorek(pk) + ψk,i(pk, pi)). (4)

Eq. (4) computes for every location of part i the best

scoring location of its child k, based on the score of

part k and the spring model between i and k. This cost

maximization process can be efficiently solved via the

generalized distance transforms [6], reducing the compu-

tational complexity to be linear in the number of possible

part locations, which is the size of the regressed heat-map

from the fully ConvNet (Sec. 3.1). This inference pro-

cess could be operated by several iterations till convergence.

In our implementation of the spatio-temporal message

passing layer, for the first iteration, the local score for each

part is initialized by its corresponding unary term obtained

from the regressor layers (Figure 2 (c)). The inference pro-

cess is illustrated in Figure 2 (e). The children of one

node could be either adjacent parts in the same frame or the

same part in the neighboring frames. For the first case, the

heat-maps of other parts are directly taken as input to the

generalized distance transform, while for the second case

the scorek(pk) is the heat-map after flow warping (Fig-

ure 2 (d)). We implement message passing in a broadcast-

ing style where messages are passed simultaneously across

every edge in both directions.

Specifically, for each part i, Eq. (4) computes the best

score from its child k. The forward of this maximization

process is efficiently solved via the generalized distance

transform. The resulting Max location p∗ for each pixel is

stored. Similar to the Max Pooling operation, the backprop-
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agation of Eq. (4) is achieved through sub-gradient decent:

∂mki(pi)

∂scorek(pk)
=

{

1 if pk = p∗,

0 otherwise.

∂mki(pi)

∂ψk,i(pk, pi)
=

{

1 if pk = p∗,

0 otherwise.

The gradient for the parameter of the spring model wki is

calculated by
∂mki(pi)
∂wki

= ∂mki(pi)
∂ψk,i(pk,pi)

d(pk − pi), where

d(pk − pi) is the quadratic displacement.

4. Learning

The learning of Thin-Slicing Network is decomposed

into two stages: (1) Training fully convolutional layers and

(2) Joint training with flow warping and inference layers.

Training fully convolutional layers As discussed in

Sec. 3.1, we deploy fully convolutional layers as the basic

regressor to produce the belief maps for all the body parts

in the sequence. As shown in Figure 2 (c), every pixel posi-

tion has a confidence value for each joint. The ground truth

heat-map for a part i is written as bi
∗
(Yi = p), which is cre-

ated by placing a Gaussian peak at the center location of the

part. In our implementation, we set peak values as 1 and

the background as 0. We aim to minimize the l2 distance

between the predicted and ideal belief maps for each part,

yielding the loss function:

f =

K
∑

i=1

∑

p

∥

∥bi(p)− bi
∗
(p)

∥

∥

2
. (5)

We use the stochastic gradient descent algorithm to train

these fully convolutional layers with dropouts.

Joint training with flow warping and inference layers

For the second stage of training, the unified end-to-end

model (Figure 2) is jointly trained by initializing the weights

of the fully convolutional layers with the pre-trained param-

eters. In this training stage, instead of using l2 distance loss,

we use the hinge loss during optimization. The final loss is

defined in Eq. (6), Ii(p) is an indicator which is equal to 1

if the pixel lies within a circle of radius r centered on the

ground truth joint position, otherwise it is equal to -1:

f =

K
∑

i=1

∑

p

max(0, 1− bi(p) · Ii(p)). (6)

The parameters in the inference layer are differentiable and

hence can be trained end-to-end alongside the other weights

in the network by stochastic gradient descent.

5. Experiments

In this section we present results from our experimental

evaluation of the proposed architecture performed on stan-

dard datasets. First we introduce the datasets and the im-

plementation details as used during our experiments. Fur-

thermore, we compare performance of our method with

two separate baselines: a fully convolutional network and

a ConvNet with spatial inference only. Finally, we compare

our results with other state-of-the-art approaches across

datasets.

5.1. Datasets

We conduct experiments on the Penn Action [40] and

JHMDB [14] datasets, both standard datasets to evaluate

video-based pose estimation.

Penn Action dataset the Penn Action dataset [40] is one

of the largest datasets with full annotations of human joints

in videos, containing 2326 unconstrained videos depicting

15 different action categories and the annotations include

13 human joints for each image. An additional occlusion

label for each joint is also provided. We follow the original

paper [40] to split the data into training and testing subsets

in a roughly half-half manner. In total there are around 90k

images for training and 80k images for testing.

JHMDB dataset The JHMDB dataset [14] contains 928

videos and 21 action classes. The dataset provides three

different splits of training and testing, and we report the

average performance over these three splits for all evalu-

ations on this dataset. We also conduct experiments on

a subset of this dataset (sub-JHMDB dataset) to compare

with other state-of-the-art methods. This subset contains

316 clips with 12 action categories. In this subset the whole

human body is in the image and all joints are annotated with

ground truth positions.

5.2. Implementation Details

Data augmentation to introduce more variation in the

training data and thus reducing overfitting, we augment the

data by rotating images between -90 to 90 degrees chosen

randomly and by scaling by a random factor between 0.5

to 2. When pre-training the fully convolutional layers, the

inputs to the network are the cropped image patch around

the center of persons with random shifts. For end-to-end

training with the flow warping and spatio-temporal mes-

sage passing layer, the input patches for the sequence are

controlled to have the same pre-processing.

Network parameter settings for the fully convolutional

layers, we deploy the network structure based on [35]. This

model has a multiple-stage structure which is designed to
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alleviate the problem of vanishing gradients. We use an in-

put size of 368× 368 px in order to cover sufficient context.

The batch size is set to 20 for pre-training the convolutional

layers and 6 for jointly training the unified network respec-

tively when the thin-slicing is 5 frames. The learning rates

are initialized as 0.0005 for the first stage of training and

dropped by a factor of 3 every 20k iterations. For end-to-

end training, the learning rate is set to be lower (0.0001)

and is dropped every 5k iterations also by a factor of 3. The

dropout rate is set to 0.5 for the first stage and increased

to 0.7 for the second stage with flow warping and message

passing layers to reduce potential effects of overfitting. The

fully ConvNet is trained for 10 epochs for initialization.

The unified end-to-end model typically converges after 3-

4 epochs. The flow warping layer takes resized optical flow

images of the same size as the heat-maps as input with their

values rescaled by the same scaling factor.

For the spatio-temporal message passing layer, we

initialize the weight of the quadratic term to 0.01 and the

first-order term to 0 for the generalized distance transform

algorithm [6]. Please note that setting the normalization

terms when collecting messages sent from children can

help stabilize the training process. A similar observation

is also reported in [37]. We find that three iterations of

approximate inference already provides satisfactory results

and if not specified otherwise message passing is stopped

after three iterations in our experiments.

Edge connections in the graph The spatio-temporal loopy

structure used in this implementation is visualized in Fig-

ure 2 (e). Spatially, the structured model has edges coincid-

ing with body limbs and it additionally connects symmet-

ric body parts (e.g., left wrist and right wrist, left knee and

right knee) to alleviate image evidence double counting is-

sues. Temporal edges connect the same body parts across

two adjacent frames. However, our implementation of the

inference layer is flexible and can perform approximate in-

ference on arbitrary loopy graph configurations.

5.3. Evaluation Protocol

For consistent comparison with prior work on both the

Penn Action dataset and the JHMDB dataset [11, 36, 19],

we use a metric referred to as PCK, introduced in [38].

A candidate keypoint prediction is considered to be correct

if it falls within α · max(h,w) pixels of the ground-truth

keypoint, where h and w are the height and width of the

bounding box of the instance in question, and α controls

the relative threshold for considering correctness. We report

results from different settings of α. We also report results

that plot accuracy vs normalized distance from ground truth

in pixels, where a joint is deemed correctly located if it is

within a set distance of d pixels from a ground-truth joint

center, where d is normalized by the size of the instance.

Method Head Shou Elbo Wris Hip Knee Ankl Mean

[19] 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3

[36] 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

[12] 89.1 86.4 73.9 73.0 85.3 79.9 80.3 81.1

[11] 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8

baseline 97.9 94.9 76.8 72.0 95.9 88.8 85.1 87.0

S-infer 98.0 90.3 85.2 86.7 93.7 93.5 93.6 91.4

ST-infer 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.5

ST-infer(⋆) 97.9 91.1 91.3 90.9 92.5 94.4 94.5 92.8

ST-infer(∗) 97.9 89.7 84.4 86.5 93.4 93.7 93.8 91.0

ST-infer(2) 97.6 96.8 95.2 95.1 97.0 96.8 96.9 96.4

Table 1. Comparison of PCK@0.2 on Penn Action dataset. We

compare our proposed model with a baseline model, a baseline

model with spatial inference and other state-of-the-art methods.

We also investigate the performance of independent training (⋆),

the baseline ConvNet after end-to-end training (∗) and temporal

connection across 2 frames (2).

5.4. Analysis on Penn Action Dataset

Baseline comparison: Table 1 shows the relative perfor-

mance on the Penn Action test set. For consistent compari-

son with previous work [36, 11, 19] the metric PCK@0.2 is

used. This means a prediction is considered correct if it lies

within (α = 0.2) ×max(sh, sw). We first compare results

from a baseline model, a spatial-only model and finally our

spatio-temporal inference model. The baseline model cor-

responds to the pure fully ConvNet as described in Sec. 3.1

and is trained with loss Eq. (5). We also report the result af-

ter only applying spatial inference on top of the heat-maps

obtained from the ConvNet, coresponding to only the blue

arrows in Figure 2 (e). Please note that these two settings

essentially treat video-based pose estimation as pure con-

catenation of single image predictions. Finally, we report

the performance of our proposed end-to-end trainable net-

work with full spatio-temporal inference.

Our baseline setting achieves 87.0% average accuracy for

all 13 body parts. Spatial inference with geometric con-

straints among human body parts in individual images in-

creases the overall result by 4.4%. By incorporating tem-

poral consistency across frames, we observe an additional

accuracy gain of 5.1% over spatial inference only.

Body parts like head and shoulders are usually visible and

less flexible, so even with the baseline model very high de-

tection accuracy can be achieved. However, parts such as

elbows and wrists are the most flexible joints of our body.

This flexibility can yield configurations with very large vari-

ation and these joints are also prone to be occluded by other

parts of the body. This is shown by the low detection rates

from the baseline model. With spatial message passing,

the accuracy increases, and our proposed model boosts this

again by roughly 10%. Note that predictions for shoulders

can be negatively influenced by sending or receiving mes-

sages from elbows through spatial inference only. However,

deploying temporal information helps in recovering from
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Figure 3. PCK curve for Penn Action dataset. We compare our proposed model with two baselines – ConvNet-only and spatial inference-

only. Ours yields consistent accuracy improvements across the entire range of strictness.

such errors.

Analysis of normalized distance curves Figure 3 plots the

normalized distance to the ground truth annotations. Gen-

erally, our proposed model outperforms the baseline model

and the one with spatial inference over all levels of the eval-

uation and across all joints. Interestingly, even for stable

(and hence easy to predict) joints like the head, we can

still see improvements. In particular when the metric gets

more strict (i.e., smaller d). In the cases of more flexible

body parts such as elbows, wrists and knees, a constant im-

provement for both loose and strict metric can be observed.

Especially over the 0.05 to 0.1 region, we can clearly ob-

serve more accurate predictions. This further suggests that

back-propagating the error from several frames through our

spatio-temporal network architecture benefits both unary

and pairwise terms.

Further evaluations We also test the effectiveness of

joint training of convolutional layers with message passing.

Keeping the weights of convolutional layers fixed, we just

train the parameters in the spatio-temporal inference layer.

The overall performance is 92.8% (Table 1, row annotated

by (⋆)). It improves over the baseline model by 5.8% but

could not reach the performance of joint training. The end-

to-end training helps the fully convolutional layers to cap-

ture appearance features better. To validate this claim we

conduct the same evaluation using the convolutional lay-

ers from the end-to-end trained model (removing the spatio-

temporal inference layers) and compare the result with the

baseline model (trained standalone). An overall 4% per-

formance increase (Table 1, row annotated by (∗)) can be

observed. We also perform the experiment with temporal

edges across not only 1 frame but 2 frames (Table 1, row

Method Head Shou Elbo Wris Hip Knee Ankl Mean

baseline 93.2 72.4 57.3 61.9 88.4 63.6 48.6 70.9

S-infer 93.6 85.1 72.9 70.1 87.2 66.2 52.2 76.5

ST-infer 93.6 94.7 84.8 80.2 87.7 68.8 55.2 81.6

baseline(∗) 86.2 50.2 42.9 47.4 61.4 43.4 34.1 54.5

S-infer(∗) 86.1 62.8 55.2 51.9 68.3 48.1 36.7 60.2

ST-infer(∗) 85.4 77.6 69.4 62.6 76.9 57.4 42.9 68.7

Table 2. Results on full JHMDB dataset. The first three rows are

based on PCK@0.2 while the results with (∗) are with PCK@0.1.

annotated by (2)). However, here we do not observe a sig-

nificant increase of mean accuracy.

Comparison with state-of-the-art Table 1 lists the com-

parison between the results of previous methods and ours.

We first compare with shallow hand-crafted features based

works [36, 19]. [19] is based on N-best algorithm and [36]

employing different action specific models. We use the

figures reported in [36] for comparison. We outperform

them by a large margin for all body parts. [11] incorpo-

rates deep features with a recurrent structure to model long-

term dependency between frames. While only propagating

information over short periods of time (thin-slices of the

sequence), we still attain an overall performance boost of

4.7% on this dataset. Please note that ours consistently lo-

calizes all joints better than prior work.

5.5. Analysis on JHMDB dataset

We also conduct a systematic evaluation on the JHMDB

dataset [14]. The average result of three splits on this dataset

is illustrated in Table 2. The first three rows summarize the

performance under the PCK@0.2 metric. The same three

models and settings as previously are evaluated and we ob-

serve results consistent with the experiments conducted on
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Figure 4. Qualitative results on Penn Action dataset. We visualize connections among challenging limbs (arms and legs). Some failure

cases are listed. Our method may miss limbs due to significant occlusions and heavy blur (last row).

the Penn Action dataset. The proposed end-to-end model

boosts the overall performance by a relatively large margin.

We also provide results for PCK@0.1 (Table 2, row marked

with ∗). To consistently compare with other state-of-the-art

Method Head Shou Elbo Wris Hip Knee Ankl Mean

[19] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

[36] 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

[12] 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8

baseline 97.2 82.2 65.2 66.5 96.3 84.4 76.8 82.3

S-infer 97.0 87.3 74.9 71.1 97.5 89.4 86.0 86.9

ST-infer 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

Table 3. PCK@0.2 results on sub-JHMDB dataset. We compare

with other previous methods and our own baselines.

results, we perform further experiments on a subset of the

JHMDB dataset. These subsets remove sequences with in-

complete bodies. The comparison is listed in Table 3. We

outperform shallow feature based methods by a large mar-

gin [19, 36]. In [12], features are taken from the deep Conv-

Net and a graphical model based inference is conducted in-

dependently to refine the result. Our proposed method also

provides better performance across all body parts.

5.6. Qualitative results

Figure 4 illustrates results from representative sequences

taken from our experiments. Our method can capture articu-

lated poses with strong pose changes across several frames.

Cases with cluttered background, occlusion, and blur are

included. Failure cases, shown in the bottom row of Fig-

ure 4, are often linked to extended periods of motion blur

or occlusion across many frames. This hinders the ConvNet

from capturing local appearance properties and impacts the

estimation of dense optical flow. In these cases temporal

inference over longer distances may be necessary.

6. Conclusion

We have proposed an end-to-end trainable network tak-

ing spatio-temporal consistency into consideration to es-

timate human poses in natural, unconstrained video se-

quence. We have experimentally shown that leverag-

ing such a unified structured prediction approach outper-

forms multiple baselines and state-of-the art methods across

datasets. Training regression layers jointly with the spatio-

temporal inference layer benefits cases that display motion

blur and occlusions but also improves predictions of unary

terms due to the iterative back-propagation of errors. Inter-

esting directions for future work include long-range tempo-

ral dependencies and handling of groups of people.
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