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Introduction

•Goal : Design a “motion part” based representation for human motion
recognition.

•Existing works :
I Low level local spatio-temporal features : HOG, HOF, HOG3D etc.

These features share local and repeatable properties.
I High level representations or models : Motion Energy and History

Image, Action Bank etc. The features share global and discriminative properties.

•Our idea : To preserve the advantages of low level features and global
templates, we propose a mid-level 3D (spatio-temporal) part, called
motionlet. It corresponds to the moving process of parts, objects,
visual phrase etc.

•Properties :
I High motion saliency : it is able to capture the part with strong motion cues.
I Multiple scales : it is a balance between local features and global template.
I Representative and discriminative : it can provide rich information for

classifying motions.

Low Level Features

•Spatio-temporal Orientation Energy [1,2] :
I 3D orientation filter : E

θ̂
(x) =

∑
x′∈Ω(x)(G3

θ̂
∗ V)2.

I Marginalization : Ẽn̂(x) =
∑N

i=0 E
θ̂i(n̂)(x).

I Substraction : Ei = max(Ẽi − Ẽs − Ẽo, 0), ∀i ∈ All − {s, o}.
I Normalization : Ei =

Ei∑M
j=1 Ej

.

•Dense HOG and HOE:

Figure 1: Illustration for dense HOE and HOG.

Figure 2: Low level motion saliency and features.

Motionlet Extraction & Video Representation

Figure 3: Pipeline of motionlet Construction.

•Motionlet Construction :
I Extraction of Motion Salient Regions :

1. We obtain the motion salience map and its binarization:

s(Ω) =
∑

x∈Ω

∑
i∈All−{s,o} Ei(x) ⇒ B(Ω) =

{
1 if s(Ω) > α,

0 otherwis.
2. We can obtain a large pool of 3D regions with different sizes by connected component analysis:

{R1, · · · ,RM}.
I Finding Motionlet Candidates :

1. We define the similarity between two subregions:
Sim(Ri,Rj) = maxx {

∑
u m(Ri(x + u),Rj(u))}.

2. With similarity measures, we use Affinity Propagation to cluster 3D regions.
I Ranking Motionlet :

1. We define the representative and discriminative measure of Mj using matching score s:

Pj =
∑K

k=1 Nk(sj
k−sj)2

∑K
k=1

∑
Vi∈Ck

(sj
i−sj

k)
2
, sj

k = 1
Nk

∑
Vi∈Ck

sj
i , sj = 1∑K

k=1 Nk

∑K
k=1 Nksj

k

2. Considering the correlation of motionlets, we design a greedy algorithm to select effective
motionlets:

•Video Representation :
I Motionlet activation vector : we represent an action video using max

pooling for the matching score of motionlets.
I Spatio-temporal pyramid : three layers 1 × 1 × 1, 2 × 2 × 2, and 1 × 1 × 4.
I Classification : LibSVM and one vs. all for multi-class classification.
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Experiment Results

•Settings : We conduct experiments on three datasets: KTH,
HMDB51, UCF50.

•Examples :

Figure 4: Examples of motionlet from three datasets: KTH, UCF50, and HMDB51.

•Results and Comparisons :

Method Accuracy
Harris3D + HOG/HOF 91.8

Cuboids + HOF3D 90.0
Dense + HOF 88.0

Hessian + ESURF 81.4
HMAX(C2) 91.7
3D CNN 90.2
GRBM 90.0

ISA (dense sampling) 91.4
ISA (norm thresholding) 93.9

ActionBank 98.0
Motionlet (1000) 92.1
Motionlet (3000) 93.3

Method Accuracy
Gist 13.4

Harris3D + HOG/HOF 20.2
HMAX(C2) 23.2

Motion Interchange Pattern 29.2
Action Bank 26.9

Motionlet (1000) 32.1
Motionlet (3000) 33.7

Method GV LOGO
Gist 38.8 -

Harris3D + HOG/HOF 47.9 -
Motion Interchange Pattern 68.5 72.7

Action Bank 57.9 -
Motionlet (1000) 67.9 70.2
Motionlet (3000) 71.7 73.9

Table 1: Results on three datasets: KTH, HMDB51, and UCF50.

•Combined with other representations :
Method HMDB51 UCF50

Combined with Harris3D + HOG/HOF 35.5 73.6
Combined with Action Bank 39.0 74.0

Combine All 42.1 78.4
Table 2: Recognition accuracy of combined representation.

•Varying number of motionlets :
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Figure 5: Results of varying motionlet sizes and compare ranking algorithm with
random selection, Left: HMDB51 and Right: UCF50.
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