

Motionlets: Mid-Level 3D Parts for Human Motion Recognition LiMin Wang^{1,2}, Yu Qiao², and Xiaoou Tang^{1,2}

Introduction

- Goal: Design a "motion part" based representation for human motion recognition.
- Existing works:
- Low level local spatio-temporal features: HOG, HOF, HOG3D etc. These features share *local* and *repeatable* properties.
- High level representations or models: Motion Energy and History Image, Action Bank etc. The features share *global* and *discriminative* properties.
- Our idea: To preserve the advantages of low level features and global templates, we propose a mid-level 3D (spatio-temporal) part, called *motionlet*. It corresponds to the moving process of parts, objects, visual phrase etc.

• Properties:

- High motion saliency: it is able to capture the part with strong motion cues.
- Multiple scales: it is a balance between local features and global template. Representative and discriminative: it can provide rich information for classifying motions.

Low Level Features

- Spatio-temporal Orientation Energy [1,2]:
- **3D** orientation filter: $E_{\hat{\theta}}(\mathbf{x}) = \sum_{\mathbf{x}' \in \Omega(\mathbf{x})} (G_{\hat{\theta}}^3 * V)^2$.
- Marginalization: $\widetilde{E}_{\hat{\mathbf{n}}}(\mathbf{x}) = \sum_{i=0}^{N} E_{\hat{\theta}_i(\hat{\mathbf{n}})}(\mathbf{x})$.
- ▶ **Substraction**: $\overline{E}_i = \max(\widetilde{E}_i \widetilde{E}_s \widetilde{E}_o, 0), \quad \forall i \in \text{All} \{s, o\}.$ • Normalization: $\overline{E}_i = \frac{E_i}{\sum^M \overline{E}_i}$.
- Dense HOG and HOE:

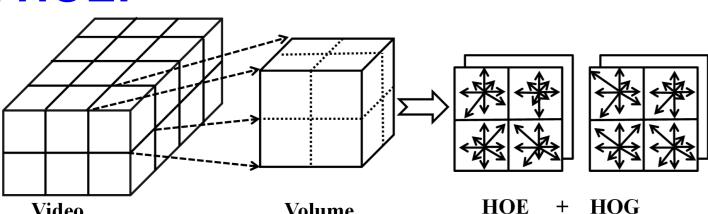


Illustration for dense HOE and HOG. Figure 1:

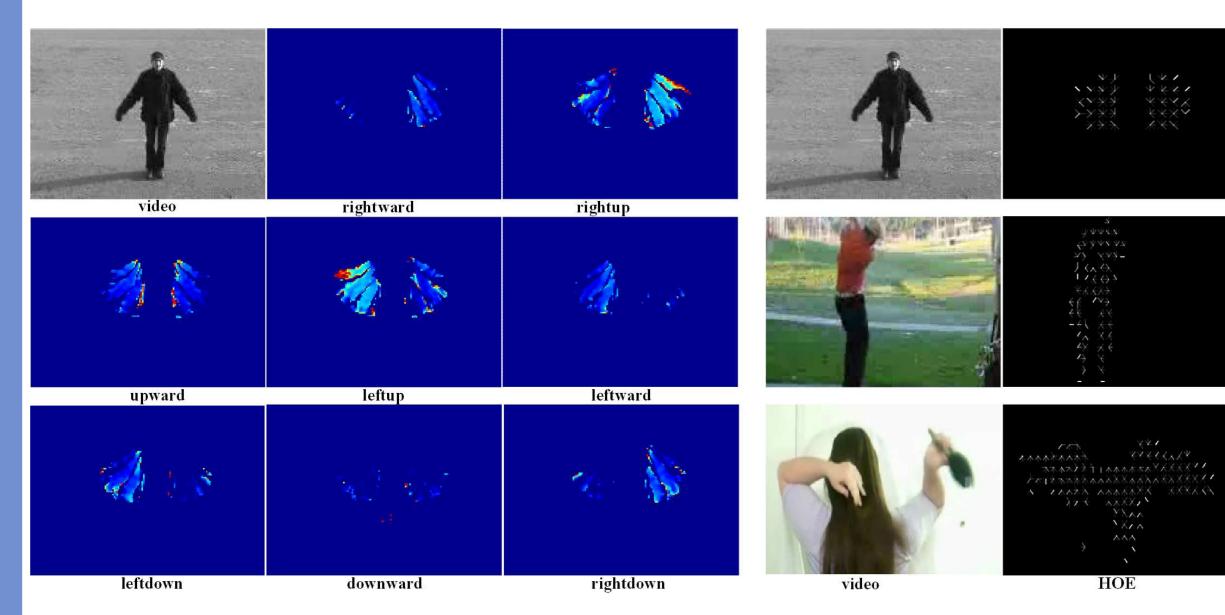
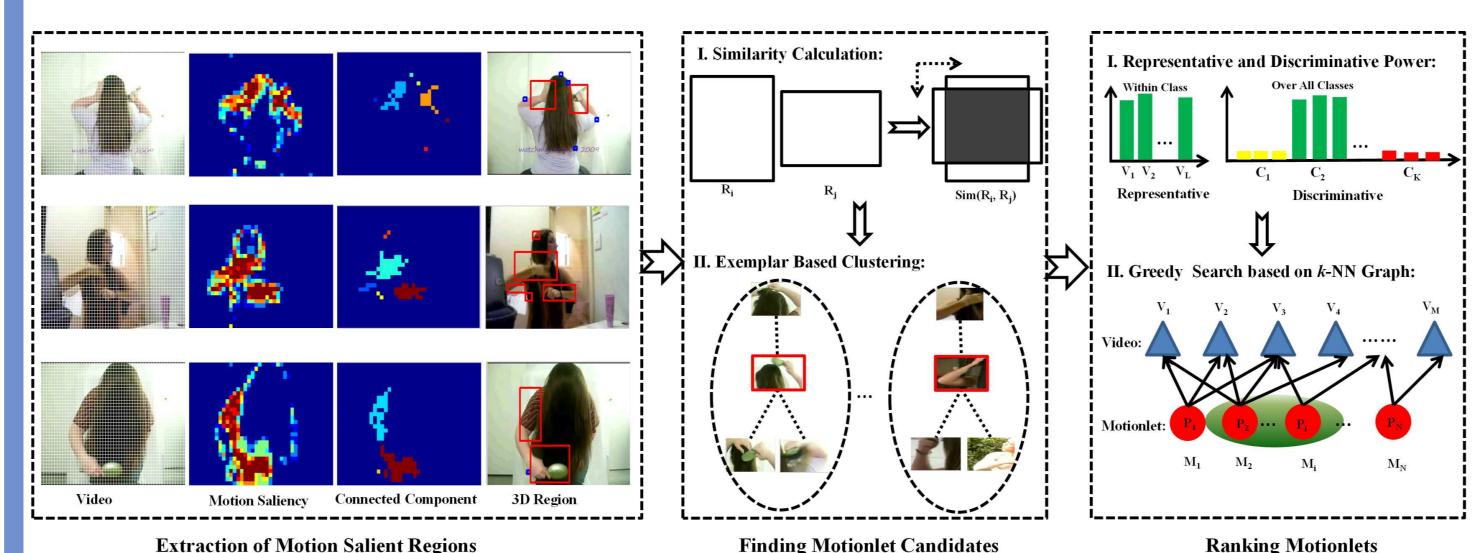



Figure 2: Low level motion saliency and features.

LiMin Wang, Yu Qiao, and Xiaoou Tang

¹Department of Information Engineering, The Chinese University of Hong Kong ²Shenzhen Institutes of Advanced Technology, CAS, China

Motionlet Extraction & Video Representation

Extraction of Motion Salient Regions

Finding Motionlet Candidates

Figure 3: Pipeline of motionlet Construction.

Motionlet Construction: Extraction of Motion Salient Regions:

We obtain the motion salience map and its binarization:

- $s(\Omega) = \sum_{\mathbf{x}\in\Omega} \sum_{i\in \mathrm{All}-\{s,o\}} \overline{E}_i(\mathbf{x}) \quad \Rightarrow \quad \mathcal{B}(\Omega) = \begin{cases} 1 & \text{if } s(\Omega) > \alpha, \\ 0 & \text{otherwis.} \end{cases}$
- 2. We can obtain a large pool of 3D regions with different sizes by connected component analysis: $\{\mathcal{R}_1,\cdots,\mathcal{R}_M\}.$

Finding Motionlet Candidates:

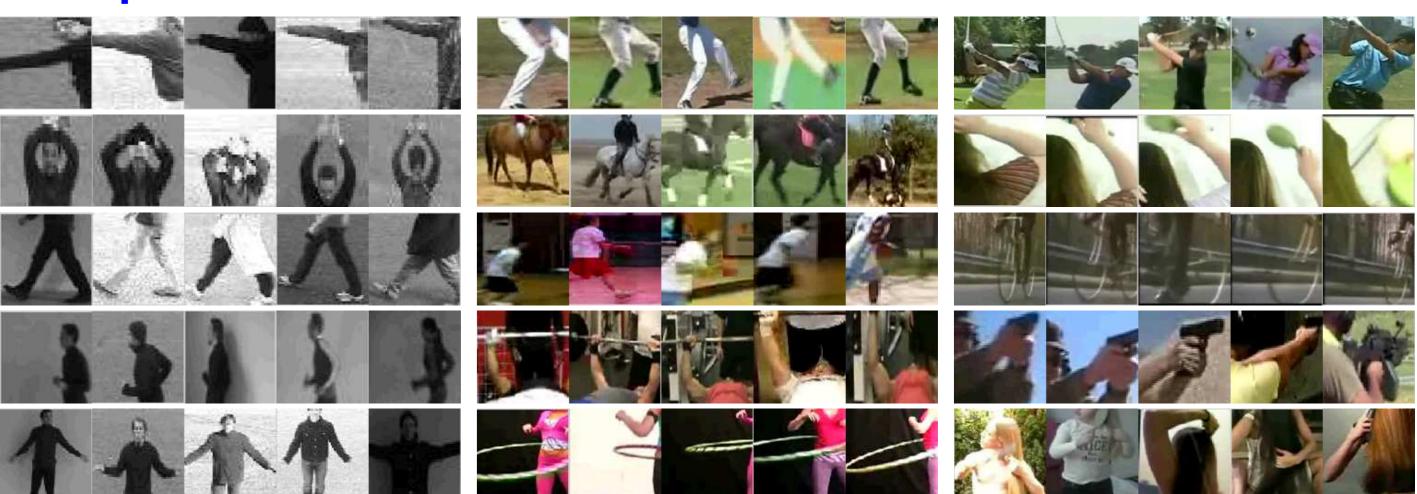
- . We define the similarity between two subregions: $\operatorname{Sim}(\mathcal{R}_i, \mathcal{R}_j) = \max_{\mathbf{x}} \{ \sum_{\mathbf{u}} m(\mathcal{R}_i(\mathbf{x} + \mathbf{u}), \mathcal{R}_j(\mathbf{u})) \}.$
- 2. With similarity measures, we use Affinity Propagation to cluster 3D regions.
- Ranking Motionlet:
- . We define the representative and discriminative measure of \mathcal{M}_i using matching score s: $P_{j} = \frac{\sum_{k=1}^{K} N_{k} (\vec{s}_{k}^{j} - \vec{s}^{j})^{2}}{\sum_{k=1}^{K} \sum_{k=1}^{K} (\vec{s}_{k}^{j} - \vec{s}_{k}^{j})^{2}} , \quad \vec{s}_{k}^{j} = \frac{1}{N_{k}} \sum_{k=1}^{K} N_{k} \vec{s}_{k}^{j} - \frac{1}{N_{k}} \sum_{k=1}^{K} N_{k} \vec{s}_{k}^{j}$
- 2. Considering the correlation of motionlets, we design a greedy algorithm to select effective motionlets:

Input : Representative and Discriminative power: *P*. Coverage table: T. Selecting number l. **Output**: Selected motionlets: S

Init: coverage counter $C \leftarrow 0$, selected set $S \leftarrow \emptyset$; for $i \leftarrow 1$ to l do

- 1. videoset \leftarrow FindLeastCoverage(C);
- 2. motionletset \leftarrow FindActive (T, videoset);
- 3. bestmot ← FindBest (P,S,motionletset);
- 4. Update (S,C,T,bestmot);

Video Representation:


- Motionlet activation vector: we represent an action video using max pooling for the matching score of motionlets.
- **Spatio-temporal pyramid**: three layers $1 \times 1 \times 1$, $2 \times 2 \times 2$, and $1 \times 1 \times 4$.
- Classification: LibSVM and one vs. all for multi-class classification.

References

- 1. S. Sandanand and J. J. Corso. Action bank: a high level representation of activity in video, in CVPR 2012. 2. K. G. Derpanis, M. Sizintsev, K. J. Cannons, and R. P. Wildes. Efficient action spotting based on a spacetime oriented structure representation. In CVPR, 2010.
- 3. H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC, 2009.

Experiment Results

- HMDB51, UCF50.
- **Examples**:

• Results and Comparisons:

		Method	Aco	curacy	
Method	Accuracy	Gist	1	3.4	
Harris3D + HOG/HOF	91.8	Harris3D + HOG/HOF	OF 20.2		
Cuboids + HOF3D	90.0	HMAX(C2)	23.2		
Dense + HOF	88.0	Motion Interchange Patte	ern 2	29.2	
Hessian + ESURF	81.4	Action Bank	2	26.9	
HMAX(C2)	91.7	Motionlet (1000)	3	32.1	
3D CNN	90.2	Motionlet (3000)	3	33.7	
GRBM	90.0	Method	GV	LOG	
ISA (dense sampling)	91.4	Gist	38.8	_	
ISA (norm thresholding)	93.9	Harris3D + HOG/HOF	47.9	47.9 -	
ActionBank	98.0	Motion Interchange Patter	n 68.5	68.5 72.7	
Motionlet (1000)	92.1	Action Bank	57.9	57.9 -	
Motionlet (3000)	93.3	Motionlet (1000)	67.9	70.2	
	<u> </u>	Motionlet (3000)	71.7	73.9	

Combined with other representations:

Combined with Ha Combined w Com

 Table 2: Recognition accuracy of combined representation.

• Varying number of motionlets:

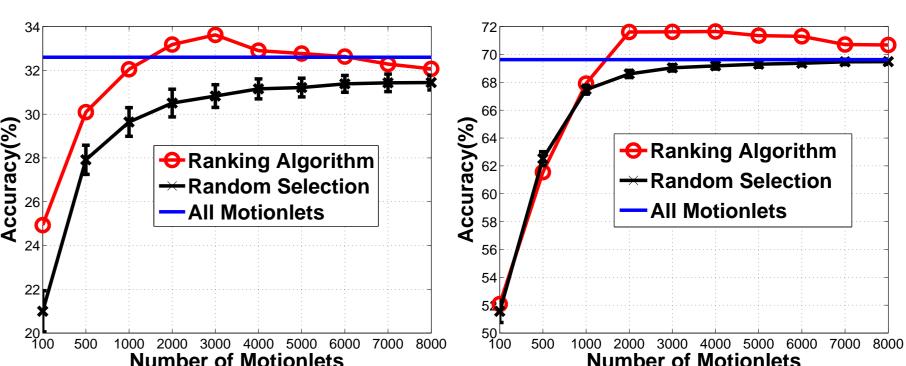


Figure 5: Results of varying motionlet sizes and compare ranking algorithm with random selection, Left: HMDB51 and Right: UCF50.

Settings: We conduct experiments on three datasets: KTH,

Figure 4: Examples of motionlet from three datasets: KTH, UCF50, and HMDB51.

ethod	HMDB51	UCF50			
arris3D + HOG/HOF	35.5	73.6			
ith Action Bank	39.0	74.0			
bine All	42.1	78.4			
accuracy of combined representa					