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Abstract This paper proposes a multi-level video represen-
tation by stacking the activations of motion features, atoms,
and phrases (MoFAP). Motion features refer to those low-
level local descriptors, while motion atoms and phrases can
be viewed as mid-level “temporal parts”. Motion atom is
defined as an atomic part of action, and captures the motion
information of video in a short temporal scale.Motion phrase
is a temporal composite of multiple motion atoms defined
with an AND/OR structure. It further enhances the discrim-
inative capacity of motion atoms by incorporating temporal
structure in a longer temporal scale. Specifically, we first
design a discriminative clustering method to automatically
discover a set of representative motion atoms. Then, wemine
effective motion phrases with high discriminative and repre-
sentative capacity in a bottom-up manner. Based on these
basic units of motion features, atoms, and phrases, we con-
struct a MoFAP network by stacking them layer by layer.
This MoFAP network enables us to extract the effective rep-
resentation of video data from different levels and scales.
The separate representations from motion features, motion
atoms, and motion phrases are concatenated as a whole one,
called Activation of MoFAP. The effectiveness of this rep-
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resentation is demonstrated on four challenging datasets:
Olympic Sports, UCF50, HMDB51, and UCF101. Exper-
imental results show that our representation achieves the
state-of-the-art performance on these datasets.
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1 Introduction

Human action recognition is an important problem in the
field of computer vision and recently has received exten-
sive research interests (Aggarwal and Ryoo 2011; Forsyth
et al. 2005; Turaga et al. 2008). State-of-the-art methods
(Wang and Schmid 2013a; Wang et al. 2013a, 2015) have
achieved satisfying performance for action recognition in
videos recorded under constrained environment, such as
the datasets of KTH (Schüldt et al. 2004) and Weizmann
(Gorelick et al. 2007). However, human action is extremely
complex in realistic scenarios, for instance, the datasets of
Olympic Sports (Niebles et al. 2010), HMDB51 (Kuehne
et al. 2011), and UCF101 (Soomro et al. 2012). First, videos
from the same action class always exhibit large intra-class
variations, caused by background clutter, viewpoint change,
and scale difference. Furthermore, an action contains com-
plex temporal structure, and it is composed of several atomic
actions. Like many other problems, an effective visual repre-
sentation is very crucial to deal with these problems in action
recognition from videos.

In the past several years, a great amount of research works
have been devoted to developing robust video representa-
tion. Among those works, the most popular is Bag of Visual
Words (BoVW) model (Csurka et al. 2004; Sivic and Zisser-
man 2003) and its variants (Wang et al. 2012) with low-level
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Fig. 1 Illustration ofmotion atoms andphrases.Actions can be decom-
posed into several motion atoms of short duration. For example of high
jump, it contains atoms: running, jumping, and landing. Meanwhile,

there exists temporal structure among multiple atoms in a long tempo-
ral scale, which can be described by motion phrase

features such as Space-Time Interest Points (STIPs) (Laptev
2005) and Dense Trajectories (DTs) (Wang et al. 2013a).
Although these methods have achieve good performance in
action recognition, there still exists a huge “semantic gap”
between low-level video features and high-level action con-
cepts. One way to bridge this semantic gap is to design
sophisticated models by incorporating spatial and temporal
relations among these low-level features, such as Tempo-
ral Structure Model (Niebles et al. 2010), Variable-duration
HMM (Tang et al. 2012), Latent Hierarchical Model (Wang
et al. 2014a), and Segmental Grammar Model (Pirsiavash
and Ramanan 2014). Most of these statistical models resort
to iterative algorithms to estimate model parameters and
approximate inference techniques to speed up action recog-
nition. In practice, however, these sophisticated models are
less effective and efficient on the large-scale action recogni-
tion datasets.

Inspired by the recent works in image classification that
build representation using mid-level “attributes” (Berg et al.
2010) or “parts” (Singh et al. 2012), we propose to discover
“temporal parts” to represent action videos in this paper.
These “temporal parts” are capable of modeling temporal
structure for action understanding. Furthermore, compared
with these complex models as described above, the proposed
mid-level “temporal parts” share the following benefits: (i)
it is efficient to compute the responses of mid-level feature
units, and they can be used for action recognition on the
large-scale datasets. (ii) the mid-level representation is inde-
pendent with the final action recognition classifier and may
be easily combined with other methods.

As shown in Fig. 1, our temporal part representation has
two components: motion atom and motion phrase. Motion
atoms aim to describe the simple and atomic motion pat-
terns of short video segments. These motion atoms act as
mid-level feature units to bridge the semantic gap between

low-level features and high-level action concepts. To this end,
we propose a discriminative clustering algorithm to discover
a set of motion atoms from training videos. Specifically, after
initialization step, our approach alternates between training
classifier for each cluster and detecting top activations with
this classifier. On convergence, each cluster corresponds to
a motion atom and the classifier serves as atom detector.
Motion phrase is a temporal composite of multiple motion
atoms at different locations as shown in Fig. 1. A single
motion atom describes the visual information in a short tem-
poral scale, and thus its discriminative capacity is limited by
its temporal duration. Motion phrase is expected to describe
long-scale motion information by sequentially or hierarchi-
cally combining multiple motion atoms. Specifically, we
adopt the AND/OR structure to define the temporal com-
position of multiple motion atoms at different locations. We
design an efficient bottom-up mining algorithm and a greedy
selection method to obtain a set of representative and dis-
criminative motion phrases.

In oder to obtain an effective video representation, we
stack the motion features, atoms, and phrases in a net-
work manner as shown in Figure 3. Each layer outputs a
video representation, corresponding to activation of motion
features, atoms, and phrases, respectively. These multi-level
representations are concatenated as the final video represen-
tation, called activations of MoFAP. MoFAP can be viewed
as a hybrid representation, containing the low-level feature
histogram, the mid-level motion atom activation, and even
higher-level motion phrase activation. We observe that this
representation is very effective in handling the complexity
of realistic videos from our experimental results. Although
the construction of motion atoms and phrases makes use of
low-level features, they are able to describe the video data in
different levels and extract extra visual information during
their construction procedure. Therefore, these mid-level rep-
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resentations are able to provide complementary information
to low-level features. In summary, this work is composed of
four contributions as follows:

– We propose a discriminative clustering algorithm to dis-
cover a set of motion atoms from unlabeled videos. These
motion atoms acts as mid-level feature units to bridge the
semantic gap between low-level features and high-level
action concepts.

– We design motion phrases to further enhance the repre-
sentative and discriminative capacity of motion atoms.
These motion phrases are able to effectively deal with
small temporal displacement and capture long-scale tem-
poral structure.

– We present a multi-level video representation by stack-
ing the encoding layers of motion features, atoms, and
phrases. This hybrid representation aggregates the infor-
mation from low-level to high-level cues, which are
complementary to each other for the task of action recog-
nition.

– We conduct experiments on four challenging datasets of
the Olympic Sports (Niebles et al. 2010), the UCF50
(Reddy and Shah 2013), the HMDB51 (Kuehne et al.
2011), and the UCF101(Soomro et al. 2012). The exper-
imental results demonstrate that our method achieves the
state-of-the-art recognition performance.

This paper is an extension of our conference work (Wang
et al. 2013b). The following describes the extensions of this
paper from its conference version:

– We extend the single-scale motion atoms into multi-scale
motion atoms, which can help address the issue of ambi-
guity in atomic actions. Meanwhile, this extension turns
out to be effective in practice.

– Based on multi-scale motion atoms, we propose to mine
not only temporal motion phrases, but also hierarchical
motion phrases. These hierarchical motion phrases are
complementary to the original temporal motion phrases.

– Based on motion features, atoms, and phrases, we design
a new multi-level representation by stacking them in a
network manner. This multi-level representation aggre-
gates the information from low-level to high-level cues
and is helpful to improve the recognition performance.

– We present new experimental results on two large
datasets: HMDB51 and UCF101, and obtain the state-of-
the-art performance. Furthermore, we conduct additional
experiments to study different aspects of ourmethod such
as: (i) usage of new low-level representation (iDTs+FV);
(ii) detailed and extensive exploration of the effectiveness
of motion atoms and phrases; (iii) cross-dataset evalua-
tion of motion atoms; (iv) performance evaluation on the
multi-level MoFAP representation.

The remainder of this paper is organized as follows: Sect. 2
reviews related works on action recognition and mid-level
representations. We present the unsupervised discovery of
motion atoms in Sect. 3. Section 4 gives the description of
mining motion phrases. We present the multi-level represen-
tation MoFAP in Sect. 5. The experimental evaluation and
exploration is described in Sect. 6. Finally, we give a discus-
sion and conclusion about our method in Sect. 7.

2 Related Work

Action recognition has been studied extensively in recent
years and readers may refer to Aggarwal and Ryoo (2011);
Forsyth et al. (2005); Turaga et al. (2008) for good surveys.
Here, we only cover the works related to our method.

Mid-Level Representations in Action Mid-level repre-
sentation such as parts, attributes and discriminative patches
originated from image based tasks such as object recog-
nition and scene classification (Berg et al. 2010; Bourdev
and Malik 2009; Doersch et al. 2013; Parikh and Grauman
2011; Singh et al. 2012). Recently, these works have been
extended to video domain and demonstrated its effective-
ness in the task of action recognition (Jain et al. 2013a; Liu
et al. 2011; Raptis et al. 2012; Sapienza et al. 2012; Wang
et al. 2013c; Zhang et al. 2013; Zhu et al. 2013). Liu et al.
(2011) first introduced the concept of attribute to represent
video data for action recognition. They proposed a unified
framework that utilizes both manually specified attributes
and data driven attributes, and resorted to a latent SVM
framework to explore the importance of different attributes.
Sapienza et al. (2012) proposed to learn discriminative space
time action parts in a multiple instance learning frame-
work. Then they used a local deformable spatial BoVW
to capture the spatiotemporal structure. Raptis et al. (2012)
grouped similar trajectories into clusters, each of which was
regarded as an action part. Then they used graphical model
to capture both both information of each part and pairwise
relations between parts. Jain et al. (2013a) extended the
idea of discriminative patches into videos and proposed dis-
criminative spatio-temporal patches for representing videos.
Wang et al. (2013c) designed an action part calledmotionlet.
Assuming motion is an important cue for action recog-
nition, they proposed a data-driven approach to discover
those effective parts with high motion salience. Zhang et al.
(2013) proposed to discover a set of mid-level patches in a
strongly-supervised manner. Similar to 2-D poselet (Bour-
dev and Malik 2009), they tightly clustered action parts
using human joint labeling, called acteme. Zhu et al. (2013)
proposed a two-layer acton representation for action recog-
nition. The weakly-supervised actons were learned via a
max-margin multi-channel multiple instance learning frame-
work.
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Ourmotion atoms and phrases can be viewed as “temporal
parts” for representing action videos. However, there are sev-
eral significant differences between our temporal parts and
othermid-level parts.Motion atomaims to describe the visual
pattern in a short temporal scale, and corresponds to a tempo-
ral atomic action. It focuses on the whole actor rather than a
local spatial region.Meanwhile,motion phrase is a structured
action part, where temporal relations among motion atoms is
captured in an AND/OR structure. These previous mid-level
action parts lack such structure information. Finally, we stack
motion features, atoms, and phrase in a network manner to
propose a multi-level representation.

Temporal Structure Actions, such as Olympic Sports
actions (Niebles et al. 2010), andCookingComposite actions
(Rohrbach et al. 2012), can be usually decomposed into sev-
eral atomic actions.Many previous researchworks have been
proposed to model the temporal structure of segments for
action recognition (Gaidon et al. 2013, 2014; Laxton et al.
2007; Niebles et al. 2010; Oliver et al. 2000; Pirsiavash
and Ramanan 2014; Tang et al. 2012; Wang et al. 2014a, b,
2006). Many research works used state-observation sequen-
tial models, such asHiddenMarkovModels (HMMs) (Oliver
et al. 2000), Hidden Conditional Random Fields (HCRFs)
(Wang et al. 2006), andDynamicBayesianNetworks (DBNs)
(Laxton et al. 2007), to model the temporal structure of
action. These models are the probabilistic graphical mod-
els, where model parameters estimation and inference is
conducted by some approximate methods, for example,
ExpectationMaximumAlgorithm, Variational Methods, and
Sampling Methods (Bishop 2006). Gaidon et al. (2013)
annotated each atomic action for each video data and pro-
posed Actom Sequence Model (ASM) for action detection.
Niebles et al. (2010), and Tang et al. (2012) proposed to
use latent variables to model the temporal decomposition of
complex actions, and resorted to the Latent SVM (Felzen-
szwalb et al. 2010) to learn the model parameters in an
iterative approach. Wang et al. (2014a) and Pirsiavash and
Ramanan (2014) extended the temporal decomposition of
complex action into a hierarchical manner by using Latent
Hierarchical Model (LHM) and Segmental Grammar Model
(SGM) respectively. These two methods aimed to capture
the temporal structure of action in a coarse-to-fine way.
Gaidon et al. (2014) introduced a spectral divisive cluster-
ing algorithm to extract a hierarchy over a large number
of tracklets. Then, they used this structure to represent
a video as an unordered binary tree for action recogni-
tion. Wang et al. (2014b) designed a sequential skeleton
model (SSM) to capture the relations among dynamic-
poselets, and performed action spatio-temporal detection
from videos.

Our work is along the research line of using temporal
structure as an effective cue for action understanding. How-
ever, we take a different perspective over this issue.We focus

on learning a set of representation units, namely motion
atoms and phrase, to represent video of complex action.
This representation is flexible with the classifier used for
recognition. Meanwhile, our representation is easily com-
bined with other level features to boost final recognition
performance.

AND/OR Model AND/OR structure has been success-
fully used in various vision tasks such as object recognition,
image parsing, and action recognition (Amer et al. 2012;
Chen et al. 2007; Si and Zhu 2013; Yao and Li 2010; Zhao
and Zhu 2011). Chen et al. (2007) used the principle of
summarization to specify a novel AND/OR graph repre-
sentation for object parsing, which efficiently allows for
all the different configurations of an articulated deformable
object. Si and Zhu (2013) proposed a framework for unsuper-
vised learning of a hierarchical AND/OR Template (AOT)
for visual object recognition and detection. Zhao and Zhu
(2011) designed a generative Stochastic Scene Grammar
(SSG) by using AND, OR, and SET rules for scene pars-
ing. Amer et al. (2012) introduced an AND/OR model to
unify multi-scale action detection and recognition in a single
framework.

The motivation of AND/OR structure in our motion
phrase is different from these principled models. We aim to
seek a flexible structure to allow both dealing with small
temporal displacement and modeling long-scale temporal
structure. Our idea is similar to the image representation
of Grouplet (Yao and Li 2010). They designed a struc-
ture representation to capture the spatial relations among
image patches for action recognition in still images. We
extend this motivation into temporal domain to model the
sequential structure of motion atoms for video-based action
recognition.

3 Discovering Motion Atoms

In this section, our goal is to discover a set of motion atoms
from multiple temporal scales by using unlabeled videos.
These motion atoms aim to describe the motion patterns of
different temporal durations (usually 20–100 frames) and
they may server as effective mid-level “temporal parts” to
represent the videos. However, this problem is very challeng-
ing due to the facts: (i) the number of possible short segments
extracted from training videos is very huge. (ii) the videos for
action recognition exhibit large intra-class variations caused
by camera motions, viewpoint and scale changes. To handle
these issues, we design a unsupervised discovery method by
using discriminative clustering algorithms. We first describe
the method of motion atom discovery from a single scale.
Then, we extend this approach to find motion atoms from
multiple scales.
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Algorithm 1: Discovery of motion atoms.
Data: Training videos:V = {Vn}Nn=1.
Result: Motion atoms: A = {Am}Mm=1.
// Initialization.
- S ← DenseSampling(V).
- T ← CalculateSimilarity(S).
- A ← APCluster(T).
// Iteration Process.
while t ≤ Num do

foreach cluster Am with si ze(Am) > τ do
TrainSVM(Am ,V).
FindTop(Am ,V).

end
CoverageCheck(A,V).
t ← t + 1.

end
- Return motion atoms: A = {Am}Mm=1.

3.1 Discovery of Motion Atoms from a Single Scale

Inspired by a recent work on finding mid-level patches in
images (Singh et al. 2012), we propose a discriminative clus-
tering method for discovering motion atoms. However, the
visual patterns contained in the action videos are more com-
plex than those of natural images. We need take account
of various aspects of video data such as static appearance,
motion dynamics, and motion boundary. Thus, discovering
effective motion atoms is more challenging than discovering
mid-level patches from static images (Singh et al. 2012).

As shown in Algorithm 1, after initialization, our algo-
rithm iterates between training discriminative classifiers and
detecting top activations. Meanwhile, in order to ensure the
representative capacity of discovered motion atoms, in each
iteration, we propose a step to check the coverage of current
discovered motion atoms, called CoverageCheck. We will
give a detailed explanation of these steps in the remainder of
this subsection.

Initialization The input to Algorithm 1 is a set of training
videos V = {Vn}Nn=1, where Vn denotes the nth video clip
and N is the total number of training videos. These video
clips are with different action classes and have various tem-
poral durations. As these clips are manually cropped from a
continuous video stream, it is reasonable to assume that they
are approximately aligned in temporal dimension. Based on
this assumption, we design an average sampling strategy to
obtain a set of short video segments and group them into
clusters to initialize our iterative algorithm.

Specifically, we divide each training video into k short
segments, where k is a parameter specified according to
experimental explorations, and consecutive segments have
half overlap with each other. For each short segment, we use
Bag of Visual Words (BoVW) (Csurka et al. 2004; Sivic and
Zisserman 2003) or Fisher vector (Sánchez et al. 2013) rep-
resentation to describe the visual pattern. Based on the above

analysis, unlike static images, videos need to be characterized
from different visual aspects. So we extract multiple features
for each short segment F = { f i }Ii=1, where f i is the feature
histogram for i th view and I is the total number of views for
video segment.

With these visual representations, a similarity measure
between two segments Fm = { f im}Ii=1 and Fn = { f in }Ii=1 is
defined as follows:

S(Fm,Fn) =
I∑

i=1

K( f im, f
i
n ), (1)

where K is a kernel function defined over visual represen-
tations and its choice depends on the visual representation
f . The details about the choice of low-level descriptors,
encoding methods, and kernel function will be clarified in
Sect. 5.

With this similarity measure, we use Affinity Propagation
(AP) (Frey and Dueck 2007) to group similar segments into
clusters.AP is an exemplar-based clustering algorithmwhose
input is a similarity matrix of input samples. This method is
effective for discovering a group of similar segments and
robust for input noise. It exchanges messages between data
points until a good set of exemplars gradually emerges. The
only parameter is the preference value. Due to the large vari-
ance of video segments, the preference value is set to be
larger than the median of pairwise similarity to ensure that
these segments are tightly clustered. For the initial clustering
results, we set a threshold τ to eliminate the the clusters with
small number of video segments (τ set to 4).

Iteration Process Given the initial clustering results, we
iterate between SVM training and SVM detection. First,
we train a SVM classifier for each cluster. The segments
within the cluster are chosen as positive samples. For nega-
tive samples, we select the same number of segments with
the lowest similarity to positive ones. With these positive
and negative samples, we train a kernel SVM. The kernel
function is chosen the same with Eq. (1). During SVM train-
ing, we set training parameter C as 0.01, which controls
the balance between prediction loss and ℓ2-regularization
term.

After training the SVMs, we treat the classifier of each
cluster as a detector and use it to scan over the training videos
along temporal dimension. For each training video, we fix
the length of scanning widow as 1

k d where k is equal to the
number of divided segments in the initialization step, and
d is the duration of video. We set the scanning step as 5
frames. Thanks to the additive property of histogram rep-
resentation, we resort to the temporal integration histogram
to speed up the scanning process. For each video clip, we
construct its temporal integration histogram representation
H = {hi }di=1, where hi denotes the integration histogram
summarizing frames from 1 to i . Then, for a segment spec-
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ified by starting frame s and ending frame e, its histogram
representation f can be efficiently calculated as:

f (s, e) = 1
∥he − hs∥

(he − hs), (2)

where ∥ · ∥ denotes a norm operation. This temporal integra-
tion histogram enables us to evaluate the detection score of
sliding window efficiently. After scanning over all the train-
ing samples, we select top 10 video segmentswith the highest
scores. Then based on these top detections, we retrain the
SVM classifiers for all clusters.

Coverage Check To ensure the representative capacity of
discovered motion atoms, we add a step of CoverageCheck
in each iteration. We check the coverage percentage of cur-
rent detection results and make sure that each training video
has at least 3 segments detected as positive examples by the
SVM classifiers. Otherwise, we will randomly extract seg-
ments from these clips and perform AP clustering in these
newly-added segments. These clusters will be added into
next iteration. This step is very crucial to gurantee the diver-
sity of motion atoms and handle the complexity of action
videos.

Finally, the whole iteration procedure is repeated until
convergence, where we set the maximum of iteration number
as 4. After the maximum iterations, these SVM classifiers
A = {Am}Mm=1 are the discovered motion atoms and we will
introduce how to use them to represent the action videos in
Sect. 5.

3.2 Extension to Multi-scale Motion Atoms

The above description about the discovery of motion atoms
is based on a single temporal scale. However, as this discov-
ery algorithm is an unsupervised learning method and there
are no annotations for motion atoms in training samples, it is
not easy to identify the temporal durations of motion atoms.
To handle this issue, we propose a solution of discovering
motion atoms from multiple temporal scales. We aim to dis-
cover motion atoms of different temporal durations (ranging
from 20 to 100 frames) simultaneously.

Specifically,wefirst divide each video clips into k1, k2, . . .
kn segments. For each video clip, the resulting segments have
various temporal durations and may correspond to motion
atoms at different temporal scales. Then, we separately con-
duct initialization step for each temporal scale according
to the description in previous section. Based on these ini-
tial clustering results, we iterate among SVM training, top
detection and coverage checking for different temporal scales
independently. Finally, we obtain a set of motion atoms
from different temporal scales and these motion atoms may
describe visual patterns of different temporal durations. We
call these motion atoms discovered from different temporal

scales as multi-scale motion atoms. Empirical results show
that the proposedmulti-scale extension is effective in improv-
ing the recognition performance.

4 Mining Motion Phrase

Motion atoms are based on clustering short video segments
in an unsupervised manner. During the discovery process of
motion atoms, the correlation between atoms and action cate-
gories is ignored. Amotion atommay have strong activations
in action videos with different categories. This fact may limit
the discriminative capacity of motion atoms for the task of
classifying actions. To circumvent this problem, we make
use of these atoms as basic units to construct a structured
representation, called motion phrase.

In this section, we will describe how to construct motion
phrases based on motion atoms in a bottom-up manner. In
order to achieve good performance in action recognition,
motion phrases are expected to have following properties:

– Descriptive property: Each phrase should be a tempo-
ral composite of highly related motion atoms. It not
only captures the appearance and motion information
of each single motion atom, but also models the tem-
poral and hierarchical structure between these motion
atoms. Meanwhile, motion phrase should have a flexible
structure, which allows for small temporal displacement
caused by motion speed variations, but also encodes the
co-occurrence of multiple motion atoms in a temporal
and hierarchical manner.

– Discriminative property: To be effective in action classi-
fication, motion phrases should yield different levels of
activations with respect to different action classes. It is
desirable that a motion phrase is highly related to a cer-
tain class of action and it can distinguish this action class
from others.

– Representative property: Due to large variations among
complex action videos, eachmotion phrase can only acti-
vate with a small number of action videos. Thus, we
need to take account of the correlations between dif-
ferent motion phrases and consider the complementarity
between them. Ideally, a set of motion phrases are capa-
ble of conveying sufficient motion patterns to handle the
variations of complex actions.

4.1 Motion Phrase Definition

Based on the analysis above, we resort to an AND/OR struc-
ture to define motion phrase as a temporal composite of
multiple atom units as shown in Fig. 2. To begin with, we
introduce some notations as follows.
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Fig. 2 Illustration of motion phrase. Motion phrase is an AND/OR
structure over a set of atom units, which are indicated by ellipsoids.
The motion atoms are discovered from multiple temporal scales. There
are three types ofmotion phrases:a temporalmotion phrase,bhierarchi-

cal motion phrase, c temporal and hierarchical motion phrase. Different
types of motion phrases captures different kind of structure information
contained in the action class

Each atom unit, denoted as Π = (A, t, σ ), refers to a
motion atom A detected in the neighborhood of temporal
anchor point t . The temporal extent of A in the neighborhood
of t is modeled by a Gaussian distribution N (t ′|t, σ ). The
response value v of an atom unit Π with respect to a given
video V is defined as follows:

v(V,Π) = max
t ′∈Ω(t)

Score( f (V, t ′), A) ·N (t ′|t, σ ), (3)

where f (V, t ′) is the histogram representation extracted from
video V at location t ′, Score( f (V, t ′), A) denotes the SVM
output of motion atom A obtained in Sect. 3, and Ω(t) is the
neighborhood extent over t . In current implementation, we
fix the parameter σ as 0.5 for all atom units.

Based on these atomunits, we constructmotion phrases by
AND/OR structure.We first applyOR operation over several
atom units that have the same atom classifier and are located
nearby (e.g. 1 and 2, 3 and 4 in Fig. 2). The atom unit that
has the strongest response is selected by OR operation (e.g.
1 and 4 are selected in Fig. 2). Then, we perform AND oper-
ation over these selected atom units and choose the smallest
response as motion phrase response. Therefore, the response
value r of an motion phrase P with respect to a video V is
given by:

r(V, P) = min
ORi∈P

max
Π j∈ORi

v(V,Π j ), (4)

where ORi denotes the i th OR operation in motion phrase
P . The size of motion phrase is defined as the number of OR
operations it includes. For example, the sizes of atom phrase
in Fig. 2a–c are 2, 2, and 3, respectively.

In essence, motion phrase representation is the temporal
composite of multiple atomic motion units. The OR oper-
ation allows to search for the best location for the current
motion atom, and makes it flexible to deal with the temporal
displacement caused by speed variations. The AND opera-
tion captures the co-occurrence of severalmotion atoms from
a long temporal scale. As motion atoms are discovered from
multiple temporal scales, motion phrases may be defined
over several scales. According to their modeling scales,

the motion phrases may be generally classified into three
types:

– temporal motion phrase: Motion phrase is composed of
several motion atoms from the same temporal scale as
shown in Fig. 2a. This kind of motion phrase is designed
to capture the temporal relationship between the motion
atoms. The temporal order among differentmotion atoms
is an important cue for the understanding of complex
actions.

– hierarchicalmotion phrase:Motion phrase containsmul-
tiple motion atoms from different temporal scales and
there is only one OR operation in each temporal scale
as shown in Fig. 2b. This kind of motion phrase models
the hierarchical structure between themotion atoms from
different temporal scales.

– hierarchical and temporal motion phrase:Motion phrase
contains the motion atoms of different temporal scales
and each temporal scale containsmore than oneOR oper-
ations as shown in Fig. 2c. This kind of motion phrase
can be viewed as a combination of the other two types,
which models both temporal and hierarchical structure.

In summary, motion phrase not only captures motion
information of each motion atom, but also encodes temporal
and hierarchical structure among them. This structured rep-
resentation is able to enhance the descriptive capacity and
make it more discriminative for complex action classifica-
tion.

4.2 Evaluation of Discriminative Capacity

In order tomine a set ofmotionphrases for action recognition,
we need to define their discriminative capacity. Intuitively, a
motion phrase P is discriminative for the cth class of complex
action if it has a strong activation with this class, but weakly
activates with other action classes. Therefore, we define the
discriminative capacity of motion phrase P with respect to
class c as follows:

Dis(P, c) = Rep(P, c) − max
ci∈C−c

Rep(P, ci ), (5)
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Algorithm 2: Mining motion phrases
Data: videos: V = {Vn, yn}Nn=1, motion atoms: A = {Am}Mm=1.
Result: Motion phrases: P = {Pk}Kk=1.
- Compute response value for each atom unit on all videos
v(V,Π) defined by Equation (3).
foreach class c do

1. Select a subset of atom units (see Algorithm 3).
2. Merge continuous atom units into 1-motion phrase Pc

1 .
while maxsi ze < MAX do

a. Generate candidate s-motion phrase based on
(s − 1)-motion phrase.
b. Select a subset of motion phrases Pc

s (see Algorithm 3).
end
3. Remove the motion phrase whose Dis(P, c) < τ .

end
- Return motion phrases: P = ∪c,sPc

s .

where C represents all the classes and Rep(P, c) denotes the
representative capacity of P with respect to class c, for which
the higher value indicates stronger correlation with the class
c:

Rep(P, c) =
∑

i∈S(P,c) r(Vi , P)

|S(P, c)| , (6)

where r(Vi , P) denotes the response value of motion phrase
P in video Vi calculated by Eq. (4), S(P, c) is a set of videos
defined as:

S(P, c) = {i |Class(Vi ) = c ∧ Vi ∈ top(P)}, (7)

where Class(Vi ) is the class label of video Vi and top(P)
represents the set of top videos that have the highest response
values for motion phrase P . Due to the large variance among
action videos, a single motion phrase P could have strong
activations only with part of the videos of certain class. Thus,
we evaluate its representative capacity by using a subset of
videos of this class. In current implementation, we consider
top 40 videos with strong activations for each motion phrase
P .

4.3 Motion Phrase Mining

After the introduction to the definition of motion phrase and
its corresponding evaluation of discriminative capacity, we
are ready to propose the method to mine a set of effective
motion phrases in this subsection.

As shown in Algorithm 2, the input is a set of videos with
its corresponding labelsV = {Vn, yn}Nn=1, and a set ofmotion
atoms A = {Am}Mm=1, the output is a set of motion phrases
P = {Pk}Kk=1. Given an action class c, our basic objective is
to identify those motion phrases having high discriminative
and representative capacity with current class. Furthermore,
regarding a set of motion phrases P = {Pk}Kk=1, we also
need to consider the correlation among them, and define the

set representative capacity with respect to class c as follows:

RepSet(P, c) = 1
Tc

| ∪Pk∈P S(Pk, c)|, (8)

where Tc is the total number of training samples for class
c, S(Pi , c) is the video set defined in Eq. (7). Intuitively,
considering the correlations of different motion phrases, it
may help to eliminate the redundance and ensure the diversity
of mining results. Besides, it can make sure that the mined
motion phrases is able to handle the complexity of action
videos.

The main challenge comes from the fact that the possi-
ble combinations of atom units that form motion phrases are
huge. Assuming a video with k segments and the number of
motion atoms isM , there areM×k possible atomunits. Thus,
the total number of possible motion phrase is approximately
O(2M×k). However, it is impossible to evaluate all possible
configurations for miningmotion phrase.We develop an effi-
cient phrase mining method, inspired by Apriori algorithm
(Agrawal andSrikant 1994). Themain idea ofApriorimining
is consistent with the AND operations in motion phrase: if a
s-motion phrase has high representative capacity for action
class c, where the size ofmotion phrase is defined as the num-
ber of OR operations, then any (s−1)-motion phrase should
also have high representative capacity by removing any of its
OR operation. Therefore, based on this observation, we are
able to mine motion phrases efficiently in a bottom-up way
as follows.

As shown in Algorithm 2, the OR operation is first used to
obtain the 1-motion phrase. For each motion atom, a simple
method is applied tomerge nearby atomunits that have strong
representative capacity. Eachmerged result is then initialized
as a 1-motion phrase. Then, during each iteration, we con-
struct candidates of s-motion phrases based on (s−1)-motion
phrases. To speed up the mining process, we need to identify
a subset of motion phrases with high representative capacity.
Ideally, both the individual and set representative capacity
should be as high as possible. We design a greedy method to
select effective phrases which is summarized in Algorithm 3.
In each step, we select a motion phrase which not only has
high representative capacity itself, but also increases the set
representative capacity a lot.

For motion atoms from multiple temporal scales, we first
construct temporal motion phrases for each single tempo-
ral scale independently as described above. Then, based on
these mined temporal motion phrases, we further construct
hierarchical motion phrases using the same method. In prac-
tice, we observe that the mined hierarchical motion phrases
are complementary to temporal motion phrases and able to
further boost recognition performance.
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Fig. 3 Illustration of network architecture by stacking layers ofmotion
feature encoding, motion atom encoding, and motion phrase encoding.
In motion feature encoding layer, we extract low-level features and
encode these descriptors using methods such as Histogram Encoding
(HE) and Fisher Vector (FV). The resulting feature codes are simulta-
neously pooled as activation of motion feature and fed into next layer
for further processing. In motion atom encoding layer, we conduct tem-
poral sliding window scanning over the video and calculate the motion

atom classifier responses. These response values are not only pooled as
activation of motion atoms, but also passed into motion phrase layer. In
the layer of motion phrase encoding, according to the AND/OR struc-
ture of mined motion phrases, we passed the response values of motion
atoms through max and min layers to obtain the final activations of
motion phrases. The resulting activations of motion feature, atoms, and
atoms are concatenated as a multi-level representation, called activation
of MoFAP

Algorithm 3: Selection of motion phrases.
Data: motion phrases candidates P = {Pi }Li=1, class: c, number:

Kc.
Result: selected motion phrases: P∗ = {Pi }Kc

i=1.
- Compute the representative ability of each motion phrase
Rep(P, c) defined in Equation (6).
- Initialization: n ← 0, P∗ ← ∅.
while n < Kc do

1. For each remaining motion phrase P , compute:
△RepSet(P, c) = RepSet(P ∪ P, c) − RepSet(P, c), where
RepSet(P, c) is defined in Equation (8).
2. Choose the motion phrase:
P∗ ← argmaxP [Rep(P, c)+ △RepSet(P, c)].
3. Update: n ← n + 1, P∗ ← P∗ ∪ {P∗}

end
- Return motion phrases: P∗.

5 MoFAP: A Multi-level Representation

Now, we are ready to describe how to use the motion atoms
and phrases as mid-level units to represent action video.
Specifically, we first introduce the details about low-level
visual features of a video segment. Then, we propose amulti-

level representation MoFAP by stacking motion features,
atoms, and phrases in a network manner, as shown in Fig. 3.

5.1 Segment Low-Level Representation

Local features such as Space Time Interest Points (Laptev
2005) andDenseTrajectories (Wang et al. 2013a) have turned
out to be effective to capture the low-level visual information.
The Dense Trajectories (Wang et al. 2013a) or its improved
version (Wang and Schmid 2013a) with rich descriptors of
HOG, HOF, MBHx, and MBHy have obtained the state-of-
the-art performance on several challenging datasets. There
are two typical choices about encoding methods and its cor-
responding similarity measure:

– Histogram encoding with an RBF-χ2 kernel similarity
measure (Wang et al. 2013a).

– Fisher vector encoding with a linear kernel similarity
measure (Wang and Schmid 2013a).
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These two choices are effective approaches that aggregate
local descriptors into a holistic representation, which can be
used to summarize the appearance and motion information
for a short video segment. The detailed descriptions about
them are out of the scope of this paper and can be found in
their original papers (Wang and Schmid 2013a; Wang et al.
2013a). In experiments, we first conduct comparative study
between these two kinds of low-level representations and
figure out which are more effective for the construction of
motion atoms and phrases. For feature fusion, we use kernel-
level fusion to combine multiple descriptors, which means
that we encode each descriptor independently, and the simi-
larity measure is calculated as the summarization of multiple
kernel matrices as defined in Eq. (1).

5.2 A Multi-level Representation

We have separately introduced motion feature encoding,
motion atom discovery, and motion phrase mining in pre-
vious sections. These different feature units can be used to
represent the video clip V for the task of action recognition.
As shown in Fig. 3, we propose a multi-level representation,
called MoFAP, to capture the visual information in a hierar-
chical manner.

In the layer of motion feature encoding, we extract
low-level features, for instance, Improved Dense Trajecto-
ries (Wang and Schmid 2013a) with descriptors of HOG,
HOF, MBHx, and MBHy. These different descriptors are
independently encoded using Histogram Encoding or Fisher
Vector as described in the previous subsection. Then these
coding results are further pooled and normalized into a
global representation R f of the entire video clip, which is
called activation of motion features. Meanwhile, these cod-
ing results are input into the layer of motion atom encoding
for further processing.

In the layer of motion atom encoding, we calculate the
response value Score( f (V, t), A) of motion atom A for each
location t defined in Eq. (3). Specifically, we conduct a tem-
poral sliding window scanning and evaluate the classifier
scores of the discovered motion atoms. In current implemen-
tation, the length of sliding window is determined according
to the temporal scale of motion atoms and the scanning step
is fixed as 5 frames. Finally, these motion atom response val-
ues are further processed with max pooling operation over
the whole video clip:

rA = max
t∈{1,2,...,T }

Score( f (V, t), A). (9)

Based on these pooled results of motion atoms, we obtain
the global representation for the video clip by concatenating
them together Ra = [r1, . . . , rM ], which is called activation
ofmotion atom. Besides, the response values ofmotion atoms

are input into the next layer for computing the response values
of motion phrases.

In the layer of motion phrase encoding, we compute
the response value r(V, P) for each mined motion phrase P
according to the definition of Eq. (4). As shown in Fig. 3,
these values can be efficiently calculated through a MIN and
MAX layer sequentially. Finally, we obtain the global repre-
sentation Rp = [r(V, P1), . . . , r(V, PC )] for video clip by
concatenating the activation values of all the motion phrases,
which is called activation of motion phrase.

Activations from different encoding layers may capture
the visual patterns in different levels, and are complementary
to each other. Based on this assumption, we propose a new
representation, calledMoFAP, by combing the activations of
motion features, atoms, and phrases:

R = [R f , Ra, Rp] (10)

This representation turns out to be effective for improv-
ing action recognition performance in practice as shown in
Sect. 6.

6 Experiments

In this section, we describe the detailed experimental settings
and verify the performance of the proposed representation.
In particular, we first introduce the datasets used for evalua-
tion and their corresponding experimental setups. We then
conduct experiments to study the effect of different low-
level representations on the construction of mid-level motion
atoms and phrases.After that, we investigate the performance
of multi-scale motion atoms for different settings. Mean-
while,we study different configurations ofmotion phrase and
figure out the best setting for the structure ofmotionphrase. In
addition, we also conduct an experiment to evaluate the per-
formance of motion atoms in a cross-dataset manner. Finally,
we explore the effectiveness of MoFAP representation and
compare with the state-of-the-art methods on four challeng-
ing action recognition datasets.

6.1 Datasets and Implementation Details

Weconduct experiments on four datasets: theOlympicSports
dataset (Niebles et al. 2010), the UCF50 dataset (Reddy and
Shah 2013), the HMDB51 dataset (Kuehne et al. 2011), and
the UCF101 dataset (Soomro et al. 2012). These datasets
contain video clips from YouTube and Movies, which are
mainly captured in realistic scenarios and exhibit large intra-
class variations.

The Olympic Sports dataset has 16 complex action
classes such as high-jump, long-jump, and hammer-throw.
This dataset includes 649 training videos and 134 testing
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videos. We conduct experiments according to the setting
specified on its project website.1 The final recognition per-
formance is evaluated by computing the average precision
(AP) for each action class and reporting the mean of APs
over all classes (mAP). The videos in this dataset belong to
sport actions and exhibit complex temporal structure. Thus
it is suitable for evaluating the effectiveness of motion atoms
and phrases.

The UCF50 dataset has 50 action classes with a total of
6,618 videos. Videos in each action class are divided to 25
groups with at least 100 videos for each class. The video
clips belonging to the same group are cropped from the same
video and share similar background. We use the suggested
evaluation protocol of Leave One Group Out cross validation
(LOGO).2 We report the average accuracy over the 25 cross
validations.

The HMDB51 dataset has 51 action classes with 6,766
videos and each class has more than 100 videos.3 All the
videos are obtained from real world scenarios, such as
Movies and YouTube. The intra-class variation is very high
due to many factors, such as viewpoint, scale, background,
illumination and so on. Thus, HMDB51 is a very difficult
benchmark for action recognition. There are three training
and testing splits released on the website of this dataset. We
conduct experiments according to these splits and report aver-
age accuracy for evaluation.

TheUCF101dataset is an extension of theUCF50dataset
and has 101 action classes. It has 13,320 video clips, with res-
olution 320×240. The action classes can be divided into five
types: human-object interaction, body motion only, human-
human interaction, playing musical instruments, and sports.
We perform experiments according to the three train/test
splits posted on the website of THUMOS’13 Action Recog-
nition Challenge (Jiang et al. 2013),4 and report the mean
average accuracy over these three splits.

In our evaluation experiment, we choose Support Vector
Machine (SVM) as the classifier and employ the implemen-
tation of LIBSVM (Chang and Lin 2011). For multi-class
classification, we adopt one-vs-all training scheme and
choose the prediction with the highest score as our predicted
label.

6.2 Exploration of Low-Level Representation

We begin our experiment by exploring different low-level
representations. As described in Sect. 5.1, there are two
popular choices in histogram representations and similarity
measures, namely histogram encoding (HE) with a RBF-χ2

1 http://vision.stanford.edu/Datasets/OlympicSports/.
2 http://crcv.ucf.edu/data/UCF50.php.
3 http://serre-lab.clps.brown.edu/resources/HMDB/index.htm.
4 http://crcv.ucf.edu/ICCV13-Action-Workshop/.

kernel similarity measure (Wang et al. 2013a), and Fisher
vector encoding (FV) with a linear kernel similarity mea-
sure (Wang and Schmid 2013a). Although it has been proved
that Fisher vector encoding is more effective than histogram
encoding for action recognition in previous research works,
their performance on constructing mid-level temporal parts
(motion atoms and phrases) remains unknown. In this explo-
ration experiment, we choose the Olympic Sports dataset and
the UCF50 dataset as they are representative in difficulty and
size for the task of action recognition.

Specifically, for the first type of representation, we extract
Dense Trajectories (DTs) with four descriptors: HOG, HOF,
MBHx, and MBHy. For each type of descriptor, we train a
codebook of size 1,000 using the randomly sampled 100,000
descriptors. Then we resort to histogram encoding (HE) to
transform descriptor into the codeword space. For the second
type representation, we extract Improved Dense Trajectories
(iDTs) with the same four kinds of descriptors. Note that we
do not employ human detector to help the estimation of cam-
eramotion as in (Wang andSchmid 2013a).We chooseFisher
vector (FV) as encoding method, where the mixture number
of GMMs is set as 256. To make the training of GMMs sta-
ble, we first conduct the pre-processing step of PCA and
Whitening to de-correlate the each descriptor and reduce its
dimension by a factor of two as suggested by (Sánchez et al.
2013). For pooling method, we choose sum pooling for both
types of representations due to its good performance in previ-
ous research works. Following their original papers, we use
the ℓ1-normalization for histogram encoding and ℓ2-power
normalization for Fisher vector encoding.

In this exploration experiment, we divide each video clip
into 5 segments for motion atom discovery and use single-
scale atom representation. Therefore, for motion phrase min-
ing, we only use temporal motion phrase for evaluation. The
detailed exploration about different settings of motion atoms
and phrases will be presented in the following subsections.
The experimental results are shown in Table 1. As expected,
the RBF-χ2 kernel works better than the linear kernel for
DTs+HE representation and non-linear kernel is able to bring
around10% improvement on these datasets. It is also obvious
that iDTs with Fisher vector is more effective than DTs with
HE. For the MoFAP representation, iDTs+FV outperforms
DTs+HE by 7–8% on the two datasets. This performance
improvement may be ascribed to the explicit camera motion
estimation of iDTs and the rich representation of Fisher vec-
tor. To sum up, we will choose iDTs+FV as the low-level
representation in the remaining experimental discussions.

6.3 Exploration of Multi-scale Motion Atoms

In this subsection,we study the effectiveness ofmotion atoms
and explore the performance variationswith different settings
on the datasets of Olympic Sports and UCF50 .

123

http://vision.stanford.edu/Datasets/OlympicSports/
http://crcv.ucf.edu/data/UCF50.php
http://serre-lab.clps.brown.edu/resources/HMDB/index.htm
http://crcv.ucf.edu/ICCV13-Action-Workshop/


Int J Comput Vis (2016) 119:254–271 265

Table 1 Exploration of different low-level representations: DTs+HE and iDTs+FV, for the construction of motion atoms and phrases on the datasets
of Olympic Sports and UCF50

Datasets Olympic Sports dataset UCF50 dataset

Representation DTs+HE DTs+HE iDTs+FV DTs+HE DTs+HE iDTs+FV
Kernel linear kernel (%) χ2 kernel linear kernel (%) linear kernel (%) χ2 kernel linear kernel (%)

Motion features 58.1 70.1 88.7 66.6 77.4 90.8

Motion atoms 69.1 76.1 83.4 73.1 82.5 90.7

Motion phrases 72.3 78.2 85.4 75.2 83.1 90.9

Motion atoms and phrases 74.1 79.5 86.9 76.4 84.0 91.1

MoFAP 77.3 84.9 91.9 77.2 85.7 93.1
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Fig. 4 Performance trend of motion atom activation with respect to the number of divided segments on the datasets of Olympic Sports and UCF50
(first two figures). We also study the effectiveness of multi-scale extension in motion atom discovery (last two figures)

For the discovery of motion atoms, an important parame-
ter is the number of divided segments for each video clip.
We vary the number from 3 to 7 and the experimental results
are shown in Fig. 4. We observe that when segment number
is set to 4, 5, 6, motion atoms obtain similar performance
on both datasets, and number 5 is the best choice for motion
atom discovery. When the number is set to 3 or 7, the perfor-
mance is a bit lower. This is because that the extracted video
segments may contain multiple motion primitives when the
segment number is small such as 3. On the other hand, if the
number is larger such as 7, it leads to over segmentation of
video clip, and the divided video segment may be too short to
contain anymeaningful atomicmotion. Thus, when choosing
the number of divided segments, we need to keep a balance
between under segmentation and over segmentation of video
clip.

We also investigate the effectiveness of fusing the motion
atoms discovered from multiple temporal scales and the
experimental results are listed in Fig. 4. We first combine
the motion atoms from two scales, such as 3 and 5 segments,
4 and 5 segments. Interestingly, although the setting of 4
segments outperforms that of 3 segments, its complementar-
ity to 5 segments is smaller than that of 3 segments. This
result may be ascribed to the fact when dividing video clips
into 4 or 5 segments, it may be easy to discover very sim-
ilar motion atoms, which may reduce the complementarity
between them.We further explore the performance ofmotion
atoms when combining more temporal scales such as 3,4,5,

and we see that there is only a slight performance improve-
ment over combination of two temporal scales. According to
this observation, to keep a balance between efficiency and
accuracy, we choose the motion atoms discovered from two
temporal scales (segment numbers are 3 and 5) for represent-
ing videos in the rest of experiments.

6.4 Exploration of Motion Phrases

Having investigated different aspects of motion atoms, we
now turn to analyze the properties of motion phrases. We
mainly study the effect of phrase size on the recognition per-
formance with the Olympic Sports dataset.

We first conduct experiments using the motion phrases
mined from single-scale motion atoms (segment number is
5) and the results are shown in Fig. 5. As described in Sect. 4,
the size of a motion phrase is defined as the number of OR
operations. In order to compare the performance of motion
phrase with motion atom, we regard the motion atoms as
0-motion phrases.5 As shown in Fig. 5, motion phrase size
varies from 0 to 4 and we observe that 1-motion phrases
achieve the highest performance. Meanwhile, the 0-motion
phrases and 2-motion phrases obtain similar accuracy. How-
ever,when increasing the phrase size to 3 or 4, there is a 6–9%
decrease in the performance of action recognition. This result

5 Here we use the notation of #-motion phrase to represent motion
phrase of size #.
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Fig. 5 Exploration of the effect of motion phrase size on the Olympic
Sports dataset. We first conduct experiments using the motion phrases
from a single scale (first two figures). Then, we investigate the motion

phrases mined from the multiple scales and verify the effectiveness
hierarchical motion phrases (last two figures)

may be explained by large intra-class variations contained
by action videos. Although motion phrases of larger size are
more discriminative, they can only handle a small portion of
the complex videos. Thus, their representative capacity may
be relatively low compared with motion phrase of smaller
sizes.

In the next, we explore the performance of combining
motion phrases with different sizes and the results are sum-
marized in Fig. 5. We see that the performance increases
apparently when usingmotion phrases from size 0–2. But the
accuracy stabilizes when including motion phrases of larger
sizes such as 3 and 4. Two reasons may explain this result: (i)
As stated in previous analysis, motion phrases of larger sizes
may lack representative capacity to deal with the complexity
of video data. (ii) Typically the useful information delivered
by themotion phrases of larger sizesmay also be contained in
the motion phrases of smaller sizes. Thus, increasing the size
of motion phrase may not add much complementary visual
cues for action understanding. Therefore, to make a trade-off
between efficiency and accuracy, we will fix the maximum
size for the single-scale motion phrase as 2.

After finishing the exploration of motion phrases mined
from a single scale, we finally investigate the effectiveness
of mining motion phrases frommultiple temporal scales. We
choose the motion atoms from two scales (segment numbers
are 3 and 5). We first independently mine motion phrases
for each temporal scale and the maximum size is set as 2.

Then, based on these temporal motion phrases from two
different scales, we construct hierarchical motion phrases.
The results are shown in Fig. 5 with different maximum
sizes of hierarchical and temporal motion phrases. We see
that mining motion phrases from two temporal scales is
able to further boost the recognition performance by around
4%. This improvement implies the importance of modeling
hierarchical structure for action recognition, which agrees
the conclusions of Wang et al. (2014a) and Pirsiavash and
Ramanan (2014). To sum up, in the following explorations,
we will mine motion phrases from two temporal scales with
maximum size as 2 for temporal motion phrases and maxi-
mum size as 4 for hierarchical and temporal motion phrases.

6.5 Effectiveness of MoFAP Representation

We have separately studied different aspects of motion fea-
tures, atoms, and phrases in previous subsections. Here we
will evaluate the effectiveness of the proposed multi-level
MoFAP representation in this section. For MoFAP repre-
sentation, we will combine the activation values of motion
features, atoms, and phrases. We use a simple fusion method
by averaging their SVM scores. We conducted experiments
on four challenging datasets: (i) the Olympic Sports dataset,
(ii) the UCF50 dataset, (iii) the HMDB51 dataset, and (iv)
the UCF101 dataset.

The results are summarized in Table 2. From these results,
we see that activations of motion atoms outperform that of

Table 2 Performance
evaluation and comparison on
the four datasets

Representation Olympic
Sports (%)

UCF50
(%)

HMDB51
(%)

UCF101
(%)

Activation of motion features 88.7 90.8 57.2 84.4

Activation of motion atoms 86.7 91.9 58.9 85.5

Activation of phrases 89.9 92.2 59.5 85.7

Activation of atoms and phrases 90.2 92.7 60.5 86.5

Activation of MoFAP 92.6 93.8 61.7 88.3

We first compare the recognition performance of different layers: motion features, motion atoms, and
motion phrases. We then explore the complementarity of motion atoms and phrases. Finally, we verify the
effectiveness of the proposed MoFAP representation
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Table 3 Exploration of the effectiveness of motion atoms in the cross-dataset setting

Olympic Sports dataset UCF101 Sports dataset

Original dataset (%) Cross dataset (%) Combination (%) Original dataset (%) Cross dataset (%) Combination (%)

86.7 88.2 89.3 90.7 64.6 91.2

Original dataset means using the motion atoms discovered from its original dataset. Cross dataset means using the motion atoms discovered from
another dataset. Combination indicates using motion atoms discovered from both datasets

motion features on these datasets except the Olympic Sports
dataset. One possible explanation is that the Olympic Sports
dataset is relatively small compared with the other three
datasets. We discover about 8,000–15,000 motion atoms
from these large datasets. However, for the Olympic Sports
dataset, we only discover around 1,000 motion atoms. It
should be noted that for Fisher vector, the dimension is
2 × 256 × 198 ≈ 100, 000, which is much higher than that
of atom activations.

Motion phrases obtain higher performance than motion
atoms on the four datasets, due to their rich descriptive
power and high discriminative capacity. We also see that the
improvement is around 3%on the dataset of Olympic Sports,
which is more evident than on the other datasets. Olympic
Sports dataset is composed of complex action classes, such as
high-jump and long-jump, which can be temporally decom-
posed into several primitive actions, such aswaiting, running,
and jumping. Motion phrases are more suitable to describe
these composite actions and model the temporal and hierar-
chical structure contained by them.

The combination of motion atoms and phrases further
improves the recognition performance ofmid-level represen-
tations by around 1%. For MoFAP representation, it obtains
the highest recognition accuracy on the four datasets. It
improves over motion atoms and phrases by about 1–2%,
and over motion features by about 3–4%. The best perfor-
mance of MoFAP may be ascribed to the complementarity
of activation values from different layers. Although the con-
struction of motion atoms and phrases makes use of motion
features, theymayextract newvisual information and are able
to capture more complex patterns than low-level features.

Computational Cost of MoFAP Representation The
training process for discovering motion atoms takes time due
to its iterations over large datasets. For theUCF101 dataset, it
requires about 2 days on a workstation with 8 cores CPU and
48G RAM. The mining process of motion phrases is more
efficient due to Apriori-alike algorithm and it takes about 5 h
for the UCF101 dataset. For testing, the extraction ofMoFAP
representation is very efficient. Once we have extracted iDT
features and constructed temporal integration histogram, the
computation of activations of motion atoms and phrases only
involves a matrix multiplication and MIN/MAX operations.
In addition tomotion feature extraction, it usually takes about
extra 5 s to calculate MoFAP representation for one video
clip.

6.6 Cross-Dataset Evaluation

After verifying the effectiveness of MoFAP representa-
tions, we now evaluate the performance of motion atoms
in a cross-dataset manner. Cross-dataset evaluation is much
more challenging than testing on the original dataset, and
it is very helpful to investigate the generalization ability of
motion atom. Specifically, we choose two related datasets:
theOlympicSports dataset and theSports dataset ofUCF101.
Although these two datasets are both about sports, the diver-
sity of the UCF101 Sports dataset is much higher than that of
the Olympic Sports dataset. First, the number of action class
in the Olympic Sports dataset is much less than that of the
Sports dataset (16 vs. 50). The action classes in the Olympic
Sports dataset are all related to the Olympic Games. How-
ever, the range of action classes in the UCF101 Sports dataset
is much broader. It contains several daily sport classes, such
as biking, horse-riding, and boxing. Meanwhile, the num-
ber of videos in the UCF101 Sports dataset is 6,673, while
the Olympic Sports dataset only contains 783 videos. More
videos also add the complexity of the dataset of UCF101
Sports.

The experimental results are shown in Table 3. We list
the recognition results of using motion atoms discovered
from the original dataset and cross dataset. On the dataset of
Olympic Sports, the motion atoms discovered from UCF101
sports dataset outperform the original motion atoms by
around 1.5%. However, on the UCF101 Sports dataset, the
motion atoms of cross dataset performmuchworse and bring
about 25% decrease in recognition accuracy. This result
can be ascribed to the fact that the complexity of UCF101
Sports dataset is much higher than that of the Olympic Sports
dataset. Thus, the representative capacity of motion atoms
discovered from the Olympic Sports dataset is insufficient
for handling the diversity of UCF101 Sports dataset. Finally,
we also conduct experiments by combining themotion atoms
from both datasets and we see that this combination brings
around 1% improvement on both datasets. This result indi-
cates the motion atoms from two different datasets contain
complementary information to each other.

6.7 Comparison to the state of the art

In this subsection, we compare the recognition performance
of MoFAP representation to that of the state-of-the-art meth-
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Table 4 We compare the
performance of MoFAP
representation with the
state-of-the-art methods on the
four challenging dataset:
Olympic Sports, UCF50,
HMDB51, and UCF101

Olympic Sports mAP (%) UCF50 Accuracy (%)

Tang et al. (2012) 66.8 Kliper-Gross et al. (2012) 72.7

Wang et al. (2013a) 77.2 Sadanand and Corso (2012) 57.9

Wang et al. (2014a) 85.2 Wang et al. (2013c) 78.4

Gaidon et al. (2014) 85.5 Wang et al. (2013a) 85.6

Wang and Schmid (2013a) 91.1 Wang and Schmid (2013a) 91.2

Activation of MoFAP 92.6 Activation of MoFAP 93.8

HMDB51 Accuracy (%) UCF101 Accuracy (%)

Jiang et al. (2012) 40.7 Karpathy et al. (2014) 63.3

Wang et al. (2013c) 42.1 Simonyan and Zisserman (2014) 88.0

Wang et al. (2013a) 46.6 Cai et al. (2014) 83.5

Jain et al. (2013b) 52.1 Wu et al. (2014) 84.2

Wang and Schmid (2013a) 57.2 Wang and Schmid (2013b) 85.9

Activation of MoFAP 61.7 Activation of MoFAP 88.3

The effectiveness of MoFAP representation is demonstrated by its superior performance on these dataset

ods on the four challengingdatasets. Thedetailed comparison
results are shown in Table 4.

For the Olympic Sports dataset, we first compare our rep-
resentation with two temporal models. The methods in Tang
et al. (2012) and Wang et al. (2014a) both resort to use latent
variables to decompose the complex action clips into seg-
ments in a sequential and hierarchical manner. They learn a
single decomposition model for each complex action using
iterative algorithms. The superior performance of our repre-
sentation indicates that the mid-level representation is able
to better handle the large complexity of videos than a sin-
gle action model. We also compare our representation with
other mid-level representations such as Tracklets (Gaidon
et al. 2014). The superior performance to these methods may
be due to fact that MoFAP is a rich representation, which
utilizes multi-level and multi-scale information. Finally, we
compare our performance with the best results (Wang and
Schmid 2013a) andMoFAPoutperforms it by 1.5%. It should
be noted that they used the sophisticated human detection and
tracking techniques to extract improved dense trajectories,
while our low-level features extraction does not require these
complex operations. Our multi-level representation achieves
the best result on the Olympic Sports dataset and shows its
effectiveness for the recognition of complex sports action.

For the UCF50 dataset, our representation is first com-
pared with several low-level features, such as Motion
Interchange Patterns (Kliper-Gross et al. 2012) and Dense
Trajectories (Wang et al. 2013a). We see that our multi-level
representation clearly outperforms these low-level represen-
tations on the UCF50 dataset. These low-level features only
describe a small spatio-temporal regionwhile our representa-
tion captures the visual information frommultiple scaleswith
longer context. Action Bank (Sadanand and Corso 2012) is a

global template to represent the action videos and is not effec-
tive for dealing with the large intra-class variations. Unlike
action bank, our motion atoms and phrases correspond to
mid-level “parts” of the action, similar to the mid-level
Motionlets (Wang et al. 2013c). They make a good tradeoff
between low-level features and global templates. However,
Motionlets are limited in temporal domain and lack descrip-
tive power for longer temporal structure. Finally, we compare
our performance with the best result (Wang and Schmid
2013a), and our representation outperforms it by 2.6%.

For the HMDB51 dataset, Jiang et al. (2012) achieved
40.7% recognition accuracy by modeling the relationship
between dense trajectory clusters. Jain et al. (2013b) better
exploited motion features by removing camera motion, and
usedVLADas encodingmethod,where they obtained 46.6%
performance. Our multi-level representation significantly
outperforms thesemethods by 10 to 15%,which indicates the
effectiveness of using representations from different layers.
We also compare our MoFAP representation with Motionlet
features (Wang et al. 2013c) and our method obtains much
higher recognition accuracy. Finally, we compare our results
with the state-of-the-art method Wang and Schmid (2013a)
and our representation outperforms it by 4.5%.

UCF101 is probably the newest action dataset till now.
So few published papers evaluate the performance of their
methods on this dataset. We mainly compare our representa-
tion with the winner of the THUMOS13 Action Recognition
Challenge (Jiang et al. 2013) and the latest methods in CVPR
2014.Karpathy et al. (2014) explored the deepConvolutional
Networks (ConvNets) for video classification. They trained
their network with an extra 1M training dataset and then
adapted the trained model to the UCF101 dataset. Our pro-
posed multi-level representation significantly outperforms
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Fig. 6 Three examples of motion atoms, Left: motion atom corresponds primitive action of Golf-Swing; Center motion atom corresponds to
primitive action of Hula-Hoop; right motion atom corresponds to primitive action in of Tai-Chi

this deep learning based method. This result may be ascribed
to the fact that the diversity and complexity of video data is
much higher than that of image data. Therefore, it requires
much more data to train ConvNets for handling the com-
plexity of video data. However, in practice, the size of action
dataset is much smaller than the image dataset, and training
theConvNets in video domain ismuchmore time consuming,
all of which leads to the poor performance of their method.
Recently, Simonyan and Zisserman (2014) propose a two
stream ConvNet for action recognition, by utilizing the pre-
trained of ImageNet model for spatial ConvNet initialization
and hand-crafted optical flow fields as temporal ConvNet
input. They obtain a similar performance to our multi-level
representation on the dataset of UCF101. Themethods in Cai
et al. (2014) andWu et al. (2014) aim to designmore effective
and powerful encoding scheme to boost the recognition per-
formance. However, their improvement over Fisher Vector is
smaller than that of our multi-level representation. Finally,
our result outperforms the winner (Wang and Schmid 2013b)
in THUMOS13 by 2.4%, where they use the spatio-temporal
pyramid to incorporate structure information.

6.8 Visualization of Motion Atoms and Phrases

In this subsection,we provide the examples of learnedmotion
atoms and phrases.We first show several examples of discov-
ered motion atoms in Fig. 6. From these results, we observe
that the designed discriminative clustering method is able
to learn motion atom classifiers that detect segments with
similar appearance andmotion.Eachmotion atommaycorre-
spond to the primitive actions such as golf-swing, hula-hoop
and tai-chi. Thus, the motion atoms can be viewed as mid-
level units and used to bridge the semantic gap between
low-level features and high-level action concepts.

Figure 7 shows several detected motion phrases on the
Olympic Sports dataset. From these examples, we notice that
the mined motion phrases can automatically detect temporal

composite of primitive motions that is of great importance
for complex action recognition. We first show two examples
of motion phrases mined from a single scale. For the action
of hammer-throw, motion phrase decomposes the video into
short segments corresponding to rolling and throwing respec-
tively. The action of basketball is divided into running and
lay-up. Then, we also give two examples of motion phrases
mined from multiple scales for action classes of triple-jump
and diving-platform. We see that these hierarchical motion
phrases are able to localize the motion atoms of longer dura-
tion in the coarser temporal scale and each motion atom is
further divided into two motion atoms of short duration in
the finer temporal scale. For example of diving-platform,
the rolling motion atom in the coarser scale is divided into
jumping-up and falling-down in the finer scale. To sum up,
these results demonstrate that our proposed motion phrase
mining algorithm is effective in modeling the temporal struc-
ture of complex action.

7 Conclusions and Discussions

This paper has proposed a new multi-level representation of
video, calledMoFAP, byutilizing the activations frommotion
features, motion atoms, and motion phrases. This multi-level
representation is able to capture the visual information from
different scales, and provides complementary visual cues for
action recognition. The effectiveness of MoFAP has been
demonstrated on four challenging datasets: Olympic Sports,
UCF50, HMDB51, and UCF101, and our approach obtains
the state-of-the-art performance on these datasets. In addition
to this superior performance, several additional interesting
insights are concluded as follows.

Motion atoms are discovered through a discriminative
clustering algorithm and act as mid-level units to represent
the video data. The activations of motion atoms is better than
activations of motion features on three challenging datasets.
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Fig. 7 Two examples of 2-motion phrase from a single temporal scale
for complex actions: hammer-throw and basketball-layup. An exam-
ple of 3-motion phrase and 4-motion phrase from multiple temporal
scales for complex actions: triple-jump and diving platform. For multi-

ple scales, we use red boxes to denote localizedmotion atoms in coarser
temporal scale and green boxes to denote localizedmotion atoms in finer
temporal scale (Color figure online)

Furthermore, the activation of motion atoms is much more
compact than Fisher vector (around 15,000 vs. 100,000 on
UCF101). In aword, the activations ofmotion atoms not only
perform well but also keep low dimensionality.

Motion phrases are defined over multiple motion atoms
using an AND/OR structure. They have the capacity of
both dealing with local temporal displacement and capturing
temporal and hierarchical structure. This structured represen-
tation is complementary to motion atom, and pretty effective
for complex action with longer temporal duration, such as
the Olympic Sports dataset.

The proposed multi-level representation is very effective
for boosting final recognition performance. Although the
construction of motion atoms and phrases is based on low-
level features, they are able to describe the video data from
different levels. The representations from these different
levels can provide complementary information to low-level
features. Thus, in practice, stacking multi-layer representa-
tions works pretty well for action recognition.

We also conduct a primary test about the generaliza-
tion ability of motion atoms in the cross-dataset setting.
Although the results of transferred representation are signif-
icantly lower than that of the original representation, fusing
them may lead to higher recognition performance. In the
future, we will focus on making the discovered mid-level
motion atoms be able to generalize well on the large datasets
and other video tasks.
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