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Latent Hierarchical Model of Temporal Structure
for Complex Activity Classification

Limin Wang, Yu Qiao, Member, IEEE, and Xiaoou Tang, Fellow, IEEE

Abstract— Modeling the temporal structure of sub-activities is
an important yet challenging problem in complex activity classi-
fication. This paper proposes a latent hierarchical model (LHM)
to describe the decomposition of complex activity into sub-
activities in a hierarchical way. The LHM has a tree-structure,
where each node corresponds to a video segment (sub-activity)
at certain temporal scale. The starting and ending time points
of each sub-activity are represented by two latent variables,
which are automatically determined during the inference process.
We formulate the training problem of the LHM in a latent
kernelized SVM framework and develop an efficient cascade
inference method to speed up classification. The advantages of
our methods come from: 1) LHM models the complex activity
with a deep structure, which is decomposed into sub-activities
in a coarse-to-fine manner and 2) the starting and ending
time points of each segment are adaptively determined to deal
with the temporal displacement and duration variation of sub-
activity. We conduct experiments on three datasets: 1) the KTH;
2) the Hollywood2; and 3) the Olympic Sports. The experimental
results show the effectiveness of the LHM in complex activity
classification. With dense features, our LHM achieves the state-of-
the-art performance on the Hollywood2 dataset and the Olympic
Sports dataset.

Index Terms— Activity classification, hierarchical model, deep
structure, latent learning, cascade inference.

I. INTRODUCTION

HUMAN activity classification is an important yet dif-
ficult problem in computer vision [1]– [3], whose aim

is to determine what people are doing given an observed
video. It has wide applications in video surveillance [4], [5],
human-computer interface [6], sports video analysis [7], and
content based video retrieval [8]. The challenges of activity
classification come from many aspects. Firstly, there always
exist large intra-class appearance and motion variations within
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the same activity class. Background clutter, illumination and
viewpoint changes, and activity speed variations also increase
the complexity and difficulty of classification. Secondly,
compared with still image, activity video has a higher dimen-
sion. The high dimensionality of video increases not only
computational cost but also difficulty to develop robust classi-
fication algorithm. Finally, human activity always consists of
a sequence of sub-activities. Each sub-activity further includes
gestures and motions of different body parts.

While activity exhibits complex temporal structure, its
sequential decomposition yields an important cue for activity
recognition. Complex activity usually is composed of several
phases (see Fig. 1). Each phase corresponds to a relatively
simple sub-activity, and there exists a temporal order among
these phases. The importance of temporal structure in activ-
ity classification has been demonstrated in previous works
[9]–[15]. However, the effective modeling of temporal struc-
ture is still challenging due to the following two problems.

The first problem is that “sub-activity” usually has no
precise definition given a complex activity type. Sub-activity is
a relatively “simple” part of a “complex” activity. Its definition
depends on the temporal scale we are considering, which
can be ambiguous. For example (see Fig. 1), high-jump in
a long temporal scale can be divided into three sub-activities,
namely running, jumping, and landing. However, in a finer
temporal scale, running can be further decomposed into several
primitive sub-activities, such as waiting, starting running, and
speeding up. The decomposition of complex activity corre-
sponds to a coarse-to-fine process.

The second problem is how to automatically decompose
complex activity into several sub-activities given a specific
video. It is a difficult problem because the sub-activities
usually have various durations and temporal displacements
due to the speed variations of motion. For instance, in the
activity of basketball-layup, some may have a long running
time before they layup the basketball, while others may have
a short running time. Therefore, classification algorithm needs
to automatically determine the starting and ending time points
of each sub-activity.

In order to address both of the problems effectively, we pro-
pose a Latent Hierarchical Model (LHM) for complex activity
recognition. LHM makes use of its tree structure to decompose
activity into sub-activities automatically, and allows us to
deal with the ambiguity of sub-activity. Nodes at the high
layer correspond to the activities in a long temporal scale.
Each activity is divided into several sub-activities at
the next layer with a relatively shorter temporal scale.
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Fig. 1. Sub-activity decomposition is related to temporal scale. High Jump can be divided into running, jumping, and landing from a long temporal scale.
However, running is further composed of waiting, start-running, and speeding up, if it is observed in a short temporal scale.

The decomposition repeats recursively until it reaches leaf
nodes. For each video segment, we use Bag of Visual Words
(BoVW) representation, for its simplicity and compactness, to
summarize motion and appearance features. Besides, the loca-
tions of all sub-activities are specified by latent variables. The
latent variables are adapted to different videos, which makes
our model flexible and effective to deal with the duration
variations and temporal displacements of sub-activities. We
formulate the learning and inference problem of LHM in the
latent SVM framework [16]. Since LHM has a deeper structure
with more latent variables, it is infeasible to traverse all
possible configurations of sub-activities during classification
process. We develop a cascade inference algorithm based on
dynamic programming and prune techniques, which greatly
reduces the computational cost.

The main contributions of this paper can be summarized as
follows:
• We propose a latent hierarchical model (LHM), which

describes the temporal structure of activity in a coarse-
to-fine manner. It introduces two latent variables to denote
the starting and ending time points of each sub-activity.
Thus, LHM is flexible in dealing with duration variation
and temporal displacement (Section III).

• We formulate the learning problem of LHM in the latent
SVM framework, and we extend the traditional linear
latent SVM by introducing non-linear kernels. Therefore,
we can use χ2 kernel for BoVW representation, which
plays an important role in final recognition performance
(Section IV-A).

• Due to a lot of possible configurations for latent variables,
we develop a cascade inference algorithm to improve
classification efficiency based on dynamic programming
and pruning techniques (Section IV-B).

• We conduct experiments on the challenging Hollywood2
and Olympic Sports Datasets, and achieve recognition
performance superior or comparable to that of the
state-of-the-art approaches. Our experimental results also
exhibit the effectiveness of hierarchical structure and
latent variables (Section V).

II. RELATED WORK

Human activity classification has been studied exten-
sively in recent years. In this paper, complex activities

refer to those with long temporal structures such as Sports
actions [12], Cooking Composite actions [17], and so on.
Here we only overview a few related works and readers can
refer to [1]–[3] for good surveys.

Video Representation. Video representation has been a
central issue of activity recognition. Low-level local fea-
tures turn out to be effective in action recognition [18].
In recent years, researchers have developed many different
spatiotemporal detectors for video, such as 3D-Harris [19],
3D-Hessian [20], Cuboids [21], and Dense [22]. Then, a local
3D-region is extracted around the interested points and a
histogram descriptor is computed to capture the appearance
and motion information. There were some typical descrip-
tors such as Histogram of Gradient and Histogram of Flow
(HOG/HOF) [23], Histogram of Motion Boundary (MBH)
[22], 3D Histogram of Gradient (HOG3D) [24], Extended
SURF (ESURF) [20], Co-occurrence descriptor [25], and so
on. Finally, a global representation is obtained for each video
clip via a statistical model.

Among these statistical models, Bag of Visual Words
(BoVW) is a common choice in action recognition [26].
Based on local features, BoVW construction usually is com-
posed of two steps: (i) encoding of the local features,
(ii) feature pooling and normalization. There were a large
body of researches on the encoding methods such as Vec-
tor Quantization (VQ) [27], Soft-assignment Encoding (SA)
[28], Fisher Vector (FV) [29], Sparse Coding (SPC) [30],
Locality-constrained Linear Encoding (LLC) [31], and so on.
These methods focus on minimizing information loss and
improving encoding efficiency. For pooling method, there were
usually two typical methods, sum pooling [27] and max pool-
ing [30], and for normalization method, typical choices include
�1-normalization, �2-normalization, and power-normalization
[29].

In addition to these low-level local features and BoVW
representation, there were some research works on mid-level
and high-level representations such as motionlet [32], motion
atom and phrase [15], action bank [33], and so on.

Temporal Structure. The importance of temporal structures
in recognizing human activity has been studied in previous
researches [9]– [15] and [34]. Probabilistic graphical mod-
els were usually adopted to model the temporal structure
of human activity or motion trajectories, such as Hidden
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Markov Models (HMMs) [5], [9], Hidden Conditional Random
Fields (HCRFs) [10], [11], and Dynamic Bayesian Networks
(DBNs) [4], [34]. The learning and inference of graphical
model were usually conducted by some approximate methods
such as Expectation Maximum, Variational Methods, and
Sampling Methods [35]. The learning process is complex and
usually needs a large mount of data to avoid overfitting. In
addition to graphical models, some research works resorted to
Max-Margin Methods [12], [14]. They formulated the learning
problem using Latent SVM [16], which has been shown to
be effective in object detection. These methods maked use of
Latent SVM to estimate the model parameters and conduct
inference. The learning of LHM is formulated in the same
latent SVM framework with these methods. But our model
focuses on decomposing complex activity into sub-activities
in a hierarchical manner. From our experimental results, the
hierarchical structure plays an important role to improve the
recognition performance.

Hierarchical Model. Hierarchical tree-structured model is
biologically inspired by the brain architecture and vision
system [36], [37]. It has been widely used in computer vision
and achieved successes on various tasks, such as learning
feature hierarchies [38], [39], object detection [16], [40], [41],
human body parsing [42], image parsing [43], and video
understanding [44]. Our model is partially inspired by the work
of [40] in which Zhu et al. developed a hierarchical model
with deep structure for object detection. In their method, an
object was represented by a mixture of hierarchical tree models
whose nodes represent object parts. The experimental results
indicated that deep structures can convey rich descriptions of
shape and appearance features. Similarly, we model human
activity in a tree-structured manner and the root corresponds
to the whole activity, while the other nodes represent sub-
activities at different temporal scales. We find that the deep
structure yields much better results than a single-layer one
in our activity classification experiments, which agrees with
[40]’s conclusion on object detection.

III. LATENT HIERARCHICAL MODEL FOR ACTIVITY

CLASSIFICATION

In this section, we firstly develop a Latent Hierarchical
Model (LHM) to describe the temporal structure of activity
video in a coarse-to-fine manner in Section III-A. Then, we
summarize the key properties of LHM in Section III-B.

A. Latent Hierarchical Model

Latent Hierarchical Model (LHM) is a tree-structured model
to capture the hierarchical decomposition of complex activity
into sub-activities. As shown in Fig. 2, LHM can be seen
as a tree decomposition of complex activity and each node
represents a video segment (activity or sub-activity) at certain
temporal scale. The root node describes the whole activity
(e.g. long jump) in a rough manner. The root node is divided
into several sub-activities in the next layer (e.g. run, jump,
land). Each sub-activity can be further decomposed recur-
sively until leaf node, which represents the atomic activity
(e.g. start run, speed up, jump up, rolling). In essence, LHM

is a generalization of STAR model [45] with the independence
assumption that child nodes are independently placed in a
coordinate system determined by their parent node. This
generalization provides more descriptive capacity to LHM
and yet allows for efficient inference algorithms due to the
independence assumption.

The parameters to describe the structure of LHM include
the depth of tree d and the number of nodes in each layer
{n1, . . . , nd }. In the example of Fig. 2, the depth is set to 3 and
each non-leaf node has 3 children. In principle, the structure
is flexible and can be set to any others. In default we adopt
the 1−3−9 structure and we will explore other structures
in experiments. LHM enables us to divide each video into
N segments in different temporal scales and each segment Si

is specified by a pair zi = (si , ei ), where si is the starting time
point of segment and ei is the ending time point of segment
in video V . In practice, s = {si } and e = {ei } are called latent
variables because they are not specified in the training set,
and we denote h = {s, e}.

For activity classification, we define a discriminant function
of LHM for each video V given the configuration of latent
variables h:

f (V ,h) =
N∑

i=1

�i (V , zi )+
∑

(i, j )∈E

�i, j (zi , z j ), (1)

where �i (V , zi ) is the localized segment model, measuring
the compatibility between video feature and segment model;
E denotes a set of pairs of parent and child node; �i, j (zi , z j )
is the temporal deformation model, incorporating the structural
constraints between the parent and child segments. We would
like to maximize the discriminant function over all possible
configurations of latent variables for each video V , then our
model can find the best location for each segment:

f ∗(V ) = max
h∈H(V )

f (V ,h), (2)

where H(V ) denotes the set of all possible configurations for
latent variables h in video V .

Segment Model. We denote φ(V , zi ) as a feature
representation extracted from segment zi of video V .
Then we can linearly parameterize the segment model as
�i (V , zi ) = ωi · φ(V , zi ). 1 In this way, each segment model
acts like a linear classifier. Due to the popularization of local
low-level features and bag of visual words (BoVW) represen-
tation [26], we make use of them as our features. Specifically,
we use the spatiotemporal interest points (STIPs) [19] with
HOG/HOF descriptors [23]. Then, we choose the vector
quantization encoding and sum pooling to construct BoVW
representation. Besides, in the further exploration part of
Section V, we also use Dense Trajectories [22] as low-level
features of LHM due to their good performance. We observe
that using the dense features enables us to further boost the
recognition performance of LHM.

Temporal Deformation Model. We denote (dsi , dei ) =
(si , ei )−((s j , e j )+vi ) as the temporal displacement of a child

1Note that we can incorporate non-linearity by kernel tricks and the details
can be found in Section IV-A.
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Fig. 2. An example of latent hierarchical model for activity video. In this example, LHM has a tree structure with three layers. The top layers has only one
node (i.e. Root) and the middle layer has three nodes (i.e. Segi , i ∈ {1, 2, 3}). There are in total nine nodes (i.e. Segi j , i, j ∈ {1, 2, 3}) at the bottom layer.
Nodes of different layers correspond to sub-activities in different temporal scale. Note that, we choose 1− 3− 9 structures in this example and we can also
resort to other structures for LHM in practice.

Fig. 3. Illustration of the temporal displacement between child node and the
anchor point determined by its parent node.

node relative to its anchor point determined by parent node
(see Fig. 3). Then we can define the temporal deformation
model as �i, j (zi , z j ) = ωi, j · ψi, j (zi , z j ) with notation
ψi, j (zi , z j ) = (dsi , ds2

i , dei , de2
i ). This can be interpreted as a

flexible term which allows the child node shift from its anchor
point and will give penalty to large deformation. In fact, this
term can be interpreted as a Gaussian distribution of child
node relative to its anchor point:

P(zi |z j + vi ) = N (zi ;μi + (z j + vi ),	i ), (3)

where covariance 	i is set to a diagonal matrix,

	i =
[
σ 2

i,s 0
0 σ 2

i,e

]
. (4)

Then for the log probability P(zi |z j + vi ), we get

log |	|− 1
2− (zi − (z j + vi )− μi )

�	−1(zi − (z j + vi )− μi )

2

= −1

2

[
(dsi − μi,s )

2

σ 2
i,s

+ (dei − μi,e)
2

σ 2
i,e

]
− log (σi,sσi,e)

= −
[
μi,s

σ 2
i,s

,
1

2σ 2
i,s

,
μi,e

σ 2
i,e

,
1

2σ 2
i,e

]
· (dsi , ds2

i , dei , de2
i )+ const.

(5)

Thus this can provide a probabilistic explanation for our
temporal deformation model.

B. Model Properties

LHM considers the hierarchical decomposition of complex
activity into sub-activities in a recursive manner. There are
several key properties about LHM which can be summarized
as follows:

• Hierarchical Structure. LHM is a hierarchical model and
has a deep structure. It can provide more descriptive
power for complex activities and capture activity temporal
structure in a coarse-to-fine way. In root, we provide
a global BoVW to describe the whole activity roughly.
In the next several layers, we focus on modeling the
sub-activities in a finer manner. In addition to rich
descriptive power, hierarchical structure can prune many
unreasonable structures and allow us to design an efficient
cascade inference algorithm, which will be discussed in
Section IV-B.

• Temporal Structure. In addition to hierarchical structure,
LHM also models the temporal structure among different
sub-activities. Each sub-activity occurs at different tem-
poral location in the whole activity and there exits an
order among them. LHM exhibits temporal constraints
among sub-activities, and provides rich information for
complex activity recognition.

• Flexibility. LHM introduces two latent variables to indi-
cate the starting and ending time points of sub-activity for
each video. The latent model not only reduces the human
annotation work during training period, but also increases
the flexibility of our approach. During the inference
phase, our model is capable of searching for a best match
for each sub-activity and thus, the temporal location is
adaptive to each specific video. Our model is very effec-
tive in dealing with the intra-class variation and is able
to align the location of each sub-activity automatically.

• Independence on Low-level Representation. LHM is a
general model concentrating on modeling the hierarchical
structure and temporal structure of complex activity
based on latent variable. LHM does not depend on
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specific video representation. In experiment, we resort
to bag of visual words (BoVW) representation of
local spatial temporal features. Currently, we firstly
use 3D Harris detector and HOG/HOF descriptor [23]
for fair comparison with other methods. Then, we
explore dense trajectory features [22] to boost the
recognition performance of LHM. In addition to BoVW
representations, we can also use other mid-level and high-
level features such as Motionlet [32], Motion Atom and
Phrase [15], and Action Bank [33]. Furthermore, some
detection and tracking techniques can be incorporated
into LHM to help determine the spatial location of
activity. These extensions are out the scope of this paper.

IV. LATENT LEARNING AND CASCADE

INFERENCE OF LHM

In this section, we investigate how to learn the model
parameters from a set of weakly labeled training samples
(i.e. each training sample is only with a category label, without
the detailed annotation of each sub-activity), and formulate
the learning problem in a latent kernelized SVM framework
in Section IV-A. Then we consider the inference problem of
how to determine the locations of all sub-activities for each
given video in Section IV-B. We design a cascade inference
algorithm to search for the best match for each sub-activity
given a video. Finally, we provide the implementation details
of learning and inference algorithm in Section IV-C.

A. Latent Learning

The learning task is to estimate the model parameters in
Equation (1) from a set of training videos V = {Vm, ym}Mm=1,
where ym ∈ {+1,−1} is the class label. We formulate the
learning problem in a Max-Margin manner:

min
w

1

2
‖w‖2 + C

M∑

m=1

ξm

s.t. f ∗(Vm) ≥ 1− ξm, if ym = 1,

f ∗(Vm) ≤ −1+ ξm , if ym = −1,

ξm ≥ 0, ∀ m ∈ {1, 2, · · · ,M}, (6)

where C is a hyper parameter to balance between regulariza-
tion term and loss term, ‖ · ‖ denotes the �2 norm, f ∗(Vm) is
the maximum of discriminant function in Equation (1):

f ∗(Vm) = max
h∈H(Vm)

N∑

i=1

�i (Vm, zi )+
∑

(i, j )∈E

�i, j (zi , z j )

= max
h∈H(Vm)

N∑

i=1

ωi · φi (Vm, zi )+
∑

(i, j )∈E

ωi, jψi, j (zi , z j )

= max
h∈H(Vm)

w · ϒ(Vm ,h), (7)

where w and ϒ(Vm ,h) are the concatenation of model para-
meters and video features:

w = (ω1, . . . , ωN , . . . , ωi, j , . . .)

ϒ(Vm ,h) = (φ1(Vm, z1), . . . , φN (Vm, zN ),

. . . , ψi, j (zi , z j ), . . .). (8)

During training process, each training sample Vm just have
class label ym . Unlike traditional SVM [46], the problem
(Equation (6)) is not convex since f ∗(Vm) contains an max-
imum operation over h, which is called Latent SVM in [16].
It can be shown that the problem will become convex for
the model parameters w when latent variables h are fixed.
Thus, this allows us to develop an iterative learning algorithm
between estimating latent variables h and optimizing model
parameters w alternatively. In practice, we optimize the learn-
ing problem in a “coordinate decent” approach:

• Step 1. we initialize the model parameter w by a simple
method, which will be discussed in Section IV-C.

• Step 2. we estimate latent variables for each training
video:

– For each positive example Vm , we estimate
h∗m = arg maxh∈H(Vm)

f (Vm,h).
– For each negative example Vm , we try to find all h′m

with f (Vm,h′m) ≥ −1.

• Step 3. we solve the standard SVM problem when fixing
the latent variables of all training samples based on the
estimation of Step 2.

We firstly initialize the our model parameter with a simple
scheme in Step 1 (Details can be found in Section IV-C). Then
we estimate the latent variables of training samples given the
model parameters estimated in Step 2. A latent SVM is semi-
convex in the sense that the training problem becomes convex
if we fix the latent variables of positive training samples [16].
Thus we try to find the latent variables to maximize the score
function for each positive training samples. The constraint
of negative training samples is convex because f ∗(Vm) is
the maximum of a set of convex functions. In principle, we
can consider all possible latent variables for each negative
training sample and put them in the constraints of Equation (6).
In practice, however, when training a model for certain class,
we often have a large number of negative training samples,
for each of which we have many possible configurations of
latent variables h. Thus we cannot afford to put all possible
configurations of negative samples into the learning problem.
We choose to mine the hard negative instances h′m with
f (Vm ,h′m) ≥ −1. How to efficiently determine the locations
of latent variables for each training sample can be found in
Section IV-B. Finally, we solve the standard SVM problem
when fixing the latent variables of each training sample.

Note that there are many optimization algorithms to solve
the convex problems in Step 3. In [16], the author develops
an algorithm of stochastic gradient descent to solve prime
problem. This algorithm is efficient but can not deal with non-
liner kernels. Although there are a large number of works on
kernel extension for traditional SVM [46], few works have
been done for latent SVM. Here, we propose to solve the
dual problem of Step 3 in order to incorporate non-linear
kernel into latent SVM framework. Specifically, based on the
estimated latent variables, we transform the learning problem
(Equation (6)) into the following form:

min
w

1

2
‖w‖2 + C

M∑

m=1

ξm
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s.t. f (Vm,h∗m) ≥ 1− ξm , if ym = 1,

f (Vm,h′m) ≤ −1+ ξm , ∀h′m ∈ H′m if ym = −1,

ξm ≥ 0, ∀m ∈ {1, 2, . . . ,M}, (9)

where h∗m is the latent variable maximizing the score of
positive sample Vm , and H′m = {h′m | f (Vm,h′m) ≥ −1} denotes
a set of hard negative instances from sample Vm . By using
Lagragian function, we can get its dual form:

max
α

∑

m:ym=1

αm,h∗m +
∑

m:ym=−1

∑

h′m∈H′m

αm,h′m

−1

2

⎡

⎣
∑

m:ym=1

αm,h∗m ymϒ(Vm ,h∗m)+

∑

m:ym=−1

∑

h′m∈H′m

αm,h′m ymϒ(Vm ,h′m)

⎤

⎦
2

,

s.t. 0 ≤ αm,h∗m ≤ C, if ym = 1,
∑

h′m∈H′m

αm,h′m ≤ C, αm,h′m ≥ 0, if ym = −1, (10)

where α are the dual variables and their relationship with w
is determined by:

w =
∑

m:ym=1

αm,h∗m ymϒ(Vm ,h∗m)

+
∑

m:ym=−1

∑

h′m∈H′m

αm,h′m ymϒ(Vm ,h′m). (11)

In the dual problem (10), we can replace the dot
product ϒ(Vm ,hm) · ϒ(Vn ,hn) with non-linear kernel
K(ϒ(Vm ,hm),ϒ(Vn ,hn)). In practice, we use linear kernel
for temporal placement model and χ2 kernel for BoVW
representation, defined as follows:

Kχ2(S1, S2) = exp

{
− 1

2S

D∑

r=1

(S1,r − S2,r )
2

S1,r + S2,r

}
, (12)

where S denotes the mean distance among training samples,
S1,r denotes the r−th element of histogram S1 and D is
the dimension of BoVW histogram. Then, the kernel for two
training instances is defined as:

K(ϒ(Vm ,hm),ϒ(Vn ,hn)) =
N∑

i=1

Kχ2(φi (Vm, zm
i ), φi (Vn, zn

i ))

+
∑

(i, j )∈E

ψi, j (z
m
i , zm

j ) · ψi, j (z
n
i , zn

j ). (13)

Note that, due to non-linear kernel, we can not calculate w
explicitly and the calculations of w · ϒ(Vk ,hk) are replaced
by the following formula:

w ·ϒ(Vk ,hk) =
∑

m:ym=1

αm,h∗m ymK(ϒ(Vm ,h∗m),ϒ(Vk ,hk))

+
∑

m:ym=−1

∑

h′m∈H′m

αm,h′m ymK(ϒ(Vm ,h′m),ϒ(Vk ,hk)).

(14)

Algorithm 1: Cascade Inference of LHM.
Data: Testing examples:V , Learned Model w and Thresholds

{ti , t ′i }.
Result: Maximum of score.
forall possible location zi of root n0 do

F[n0, zi ] ← ComputeMax(n0,zi ,V ,{ti , t ′i }).

- Return maximum of score: MAX(F[n0, z]).

Function ComputeMax(ni ,zi ,V ,{ti , t ′i }).
if X has no child then

return �i (V, zi ).
else

foreach child node n j of ni do
foreach possible location z j of n j do

//Deformation pruning
if � j,i (z j , zi ) ≤ t ′i then

skip z j .
else

F[n j , z j ] ← �i, j (zi , z j ).
q ← ComputeMax (n j ,z j ,V ,{ti , t ′i }).
F[n j , z j ] ← F[n j , z j ] + q.

s[n j ] ← MAX (F[n j , z]).
//Hypothesis pruning
if s[n j ] ≤ ti then

return −∞.
else

total ← total + s[n j ].
total ← total +�i (V, zi ).
return total .

B. Cascade Inference
The inference task of LHM is to predict class label y and

latent variables h given the video V and model parame-
ters w. The main challenge comes from the fact that the
number of possible configurations for latent variables h is
large, which prevents us from using brute force approach
to calculate the discriminant function over all possible h.
In [12], Niebles et al. used the dynamic programming and
distance transform techniques in a similar fashion to [16].
They claim that this matching scheme is efficient once the
appearance similarities between the video sequences and each
motion segment classifiers are computed. However, in our
problem, evaluating the appearance similarities is the bottle-
neck due to χ2 kernel calculation. Besides, our LHM is a
deep structure model and introduces two latent variables for
each segment, thus it is very time-consuming to calculate
the appearance similarities of all possible configurations in
advance. Inspired by the method of cascade object detection
in [47], we design a cascade inference algorithm for LHM.
The core idea of our algorithm is to make use of dynamic
programming and prune techniques to constrain the search
space of h and accelerate the process of inference.

First, we convert the inference problem into the following
subproblem using dynamic programming techniques. For a
node ni at location zi specified by starting and ending time
point pair (si , ei ), its largest discriminant value F(ni , zi ) can
be calculated by the following recursive function:

F(ni , zi ) =
∑

( j,i)∈E

max
z j
{F(n j , z j )+� j,i (z j , zi )} +�i (V , zi ).

(15)
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Then, we evaluate the score of each node in
a depth-first-search (DFS) order. The cascade inference
algorithm for a tree-structured model with n+1 nodes has 2n
intermediate thresholds for two kinds of pruning techniques.
As shown in Algorithm 1, during the DFS process, we use
two kinds of pruning techniques, namely deformation pruning
and hypothesis pruning:
• Deformation pruning: we will skip the segment specified

by z j if the temporal deformation term � j,i(z j , zi ) is
smaller than a threshold t ′j . Intuitively, the total score
will decrease greatly if it is plus the temporal deformation
term. This pruning technique enables us to constrain child
node to move in a reasonable interval.

• Hypothesis pruning: if the score maximum of a child node
s[n j ] is less than a threshold t j , then we will prune its
parent node ni at location zi . Intuitively, if the parent
node ni is located correctly, then the maximum of its
child node score would not be smaller than a threshold.
So, the small score of its child node may indicate the
location of parent node is not correct.

During the DFS process, once we evaluate the response
of node ni at location zi , we will store its value to avoid
calculating it again. Using the cascade inference algorithm, we
can find the maximum of score for each video V efficiently.
Besides, during the inference process, we can keep the location
of each node, thus we can find the best configuration of latent
variables h effectively.

C. Implementation Details

Initialization. Unlike the heuristic initialization of [12], we
propose a simple method to initialize our model structure and
training samples. We set the anchor point of child node relative
to parent node in a regular grid layout. For training samples,
we initialize latent variable h according to the model structure
i.e. ds = 0, de = 0. Then we get a set of instances for the
first round of standard SVM training.

Updating Latent Variables. During the step to estimate
latent variables h, the duration of root node is restricted to
cover at least 80% of the whole video. The positions of the
child nodes are ensured to overlap with the corresponding ref-
erence box. These restrictions can suppress some unreasonable
structures and improve search efficiency.

Thresholds of Cascade Inference. During training process,
we search all possible configurations for latent variables h
without using prune techniques. For each node, we keep the
minimum score of its child node over all positive samples.
The hypothesis pruning thresholds t j will be the minima mul-
tiplied by a ratio β1 (β1 = 0.5 in experiments). We also store
the values of temporal deformation term for different parent
and child node pairs. The deformation pruning thresholds t ′j
is set to be the minima of the deformation term multiplied
by a ratio β2 (β2 = 1.3 in experiments) over positive training
samples. Note that the deformation term is usually negative.

V. EXPERIMENTS

We firstly conduct experiments on three public action
datasets: the KTH [48], the Hollywood2 [49], and the Olympic

Sports Dataset [12]. Then we further explore some important
aspects of LHM. For the three datasets, we use LIBSVM pack-
age [50] to solve the standard SVM problem in the learning
framework of Section IV-A. For multi-class classification, we
apply the one-vs-all training scheme.

A. KTH Dataset

The KTH is a relatively simple dataset among the three
and it contains 6 action classes: boxing, hand-clapping, hand-
waving, jogging, running, and walking [48]. 2 Each action
is performed by 25 actors in four controlled environments:
outdoors, outdoors with scale variation, outdoors with different
cloths, and indoors. There is no camera motion in these videos
and the intra-class variations are relatively small compared
with other datasets. Some video frames and their detected
STIPs are shown in Fig. 4. We follow the experimental settings
described in [48] and the codebook size is 1,000.

Experimental results are shown in Fig. 5 and Table I.
From the results, we see that our method can achieve high
accuracy rates for the actions of boxing, hand-waving, hand-
clapping and walking. But for the action of running and
jogging, the performance of our method decreases because
the two actions are similar to each other and there is a strong
confusion between these two kinds of action.

Comparison with Other Methods. We compare LHM
with three other methods in Table I. The method of [48]
is based on spatiotemporal jets at the center of each
detected interest point using normalized derivatives, and use
BoVW representation and SVM classifier. The other two
methods [23], [23] are both based on HOG/HOF features.
The method of [23] uses the traditional BoVW and the
method of [12] uses a single-layer segment model. From
the comparison, we find the three methods using HOG/HOF
features obtain similar performance, which are much better
than spatiotemporal jets. LHM is comparable to other methods
using local features. The actions in KTH are relatively sim-
ple, and the detected local spatial-temporal features provide
sufficient information for activity recognition.

B. Hollywood2 Dataset

The Hollywood2 action dataset [49] is collected from 69
different Hollywood movies. 3 In total, there are 1,707 action
samples, which is composed on 823 training samples and
884 testing samples. The authors provide the clean and noisy
versions of the dataset and we use the clean version. There are
12 action classes: answer-phone, drive-car, eat, fight-person,
get-out-car, hand-shake, hug-person, kiss, run, sit-down, sit-
up, and stand-up. Some video frames and their detected STIPs
are shown in Fig. 4. As all the video clips are segmented from
movies, the video quality is very high and there is no camera
shaking. The performance is evaluated by average precision
according to paper [49] and the codebook size is set as 4,000.

The final recognition results are shown in Table II. We see
that the Hollywood2 dataset is more difficult than the KTH

2Available at http://www.nada.kth.se/cvap/actions/
3Available at http://www.di.ens.fr/ laptev/actions/hollywood2/
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Fig. 4. Sample frames from the three datasets: KTH, Hollywood2, and Olympic Sports. The detected spatio-temporal interest points (STIPs) are drawn on
the frames by yellow circles.

Fig. 5. The confusion matrix of LHM method in KTH dataset.

dataset and our method obtains average precision as 48.1%.
For action classes such as drive-car and fight-person, LHM can
perform relatively well and get average precision larger than
70%. However, for the rest of action class, the recognition rate
is relatively low. The videos are all extracted from realistic
movies and the intra-class variance is very large compared
with the KTH dataset.

Comparison with Other Methods. We compare our
method with three other methods: the BoVW model [19]
(baseline), the context model [49], and Convolutional Gated
RBM (GRBM) [51]. The BoVW model uses the same features
and codebook size and the context model exploits the static
scenes as a cue for action recognition. The Convolutional
Gated RBM aims to learn the features directly from the video

intensity with some deep models. The BoVW is implemented
by ourselves and use the same codebook with LHM. We find
the result is similar to a recent empirical study of local features
[18]. From the comparison, we observe that our method
outperforms the other two methods in 8 action classes. For
mean of average precision, our method achieves higher rate
than traditional BoVW by 2.8% and than GRBM by 1.5%.

C. Olympic Sports Dataset

The Olympic Sports Dataset is collected by [12] and has
16 sports classes: basketball-layup, bowling, clean-and-jerk,
discus-throw, diving-platform, diving-springboard, hammer-
throw, high-jump, javelin-throw, long-jump, pole-vault, shot-
put, snatch, tennis-serve, triple-jump, and gym-vault. All the
videos are from YouTube and each activity class contains a
complex temporal structure compared with the activities in
the KTH and Hollywood2 dataset. Note that the authors only
release part of their dataset on their website. 4 There are
649 sequences for training and 134 sequences for testing. We
conduct experiments according to the settings released on their
website. In order to compare our method with those proposed
by [12] and [14], we use the same feature representation and
the codebook size is 1,000. The final performance is evaluated
by computing the average precision (AP) for each of the action
classes and reporting the mean AP over all the class (mAP).

4Available at http://vision.stanford.edu/Datasets/OlympicSports/
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TABLE I

COMPARISON OF LHM METHOD WITH OTHER ACTIVITY

CLASSIFICATION APPROACHES EVALUATED USING CLASSIFICATION

ACCURACY ON THE KTH DATASET. “OVERALL” INDICATES THE

AVERAGE ACCURACY OVER ALL THE CLASSES. THE BOLD FONTS

INDICATES THE BEST PERFORMANCES

TABLE II

COMPARISON OF LHM METHOD WITH OTHER ACTIVITY

CLASSIFICATION APPROACHES EVALUATED USING THE AVERAGE

PRECISION (AP) ON THE HOLLYWOOD2 DATASET. “OVERALL”

INDICATES THE MEAN AVERAGE PRECISION (MAP) OVER ALL THE

CLASSES. THE BOLD FONTS INDICATES THE BEST PERFORMANCES

Our experiment results are shown in Table III and Fig. 8.
From the results we see that our method obtains a rela-
tively high performance in the Olympic Sports Dataset with
mAP=69.2%. For some activity categories such as basketball-
layup, diving-springboard, diving-platform, gym-vault, our
method performs pretty well and achieves average precisions
larger than 90%. See Fig. 8, our model can automatically
divide gym-vault into three sub-activities: running, rolling
in the air, and landing; long-jump into three sub-activities:
starting running, speeding up, and jumping; clean-and-jerk into
three sub-activities: beginning, clean phase, and overhead jerk
phase. The duration of each sub-activity varies and adapts to
each activity video. Each sub-activity is further decomposed
into more primitive sub-activities in the bottom layer.

However, for some activity categories such as tennis-
serve, high-jump, triple-jump, and discus-throw, our method
performs poorly and the average precision is low. We analyze
the reasons as follows. Firstly, we find there exist strong
confusions among some activity categories. For example, the
similarity among triple-jump, long-jump, and high-jump is
very high. The three activities share some sub-activities such
as running and jumping. For activities such as hammer throw,
discus-throw, and shot-put, the whole processes of activities

TABLE III

COMPARISON OF OUR METHOD WITH OTHER ACTIVITY CLASSIFICATION

APPROACHES EVALUATED USING THE AVERAGE PRECISION (AP) ON THE

OLYMPIC SPORTS DATASET. “OVERALL” INDICATES THE MEAN AVERAGE

PRECISION (MAP) OVER ALL THE CLASSES. THE BOLD FONTS

INDICATES THE BEST PERFORMANCES

are almost the same, namely firstly moving in rhythm and
then delivering. Secondly, for some activities such as tennis-
serve with short duration, their temporal structures are not as
complex as the other. Thus, our model structure may be a bit
complex than the activity class.

Comparison with Other Methods. We compare our LHM
with three other methods: the BoVW model (baseline) [23] and
two kinds temporal models [12], [14] in Table III. The method
of [12] models the temporal structure of decomposable motion
segments and formulates the problem in a similar framework.
The model of [14] is based on the variable-duration hidden
Markov model and it gets the state-of-the-art performance with
local features in this dataset.

From the comparison, the proposed LHM achieves higher
average precision for 10 of the 16 activity classes. For mean
average precision, our LHM is higher than the baseline by 11%
and than the state-of-the-art by 2.4%. These results exhibit
that hierarchical decomposition of sub-activities and automatic
adaptation of starting and ending time points is effective for
complex activity classification.

D. Further Explorations

Our LHM provides a general framework for hierarchi-
cal modeling the temporal structure of complex activity. In
this section, we study the different aspects of LHM in a
more detailed way. Firstly, we explore the different structure
settings and their influences on final recognition performance.
Secondly, we investigate the effectiveness of latent variables
by comparing the recognition performance of LHM with
temporal pyramids [52]. Temporal pyramids decompose each
video into segments of equal duration, while LHM automati-
cally aligns video by efficient search in latent variable space.
Then, we investigate the inference efficiency of the proposed
cascade algorithm. Finally, we incorporate denser and richer
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Fig. 6. Explorations of the performance for different hierarchical structures
and comparison of Latent Hierarchical Model and Temporal Pyramids on the
Olympic Sports Dataset.

local features based on dense trajectories [22] into LHM to
boost final recognition performance.

Hierarchical Model is Better. In order to explore the per-
formance of LHM with respect to model structure, we conduct
additional experiments on the Olympic Sports Dataset. We
choose three other structure settings, 1−2−4, 1−4, 1−9, and
the results are shown in Fig. 6. From the results, we see that the
structure 1−3−9 obtains the best performance (69.2%) and the
second one is 1−2−4 (67.7%). The deep structures are better
than the shallow ones: 1− 9 (63.4%) and 1− 4 (66.0%). We
conclude that deep structure is useful for the complex activity
classification. LHM models the decomposition of complex
activity into sub-activities in a coarse-to-fine manner. The deep
structure provides extra descriptive power to LHM and con-
tributes for more accurate alignment of different video sam-
ples. The comparison results indicate that hierarchical model is
better for activities with complex and long temporal structure.

Latent Model is Better. We also implement the tempo-
ral pyramid representations on the Olympic Sports Dataset.
For different structures, we compare the recognition perfor-
mance of LHM and temporal pyramids [52], which uses fixed
temporal segmentation, and the results are depicted in Fig. 6.
From the experimental results, we observe that LHM performs
much better than temporal pyramids: 1 − 3 − 9 (69.2% vs.
54.2%), 1 − 9 (63.4% vs. 52.1%), 1 − 2 − 4 (67.7% vs.
58.9%), 1−4 (66.0% vs. 59.0%). All these results indicate that
model with latent variables, which are determined adaptively
for different videos, can describe the complex activity more
effectively. Besides, we observe that the recognition rates of
temporal pyramids representation are similar to or even lower
than those of the traditional BoVW method. It implies that
if there exist strong temporal displacements among different
videos, the temporal pyramids representation may harm the
final performance. This observation can be ascribed to the fact
that its assumption of approximate temporal correspondence
in the temporal pyramid may not hold for the training and
testing samples.

Efficiency of Cascade Inference. We explore the efficiency
of cascade inference. For 300-frame length video, the number
of segments needed to be calculated for inference with cascade
and without cascade for 1 − 3 − 9 structure is shown in

TABLE IV

RESULTS OF LHM WITH DENSE TRAJECTORY ON THE OLYMPIC SPORTS

DATASET AND THE HOLLYWOOD2 DATASET. WE COMPARE OUR

RESULTS WITH THAT OF THE STATE-OF-THE-ART

APPROACH [53]. THE BOLD FONTS INDICATES

THE BEST PERFORMANCE

Fig. 7. Comparison of efficiency between inference with cascade and without
cascade.

Fig. 7. For top layer, we need to calculate the same number of
segment response for inference both with and without cascade
in top layer. However this number is relatively small due to
we have the 80% overlap constraints. For the second and
the third, cascade inference with algorithm only needs to
calculate much less segment response. Totally, the number of
calculated segment response for usual inference algorithm is
15 times of cascade inference. We implement LHM in matlab
and run on a PC with E5645 CPU(2.4GHZ) and 8G RAM.
We test 100 videos randomly and the average time for each
video is 6s for cascade inference and 70s for usual bottom-up
inference without pruning techniques. Our cascade inference
algorithm can improve the time efficiency about 10 times
without influencing the recognition performance.

Dense Features are Better. Spatiotemporal interest points
(STIPs) [19] with HOG/HOF descriptor [23] is a common
choice for local features. However, Wang et al. propose a
much denser and richer feature called dense trajectory [22],
which turns out to be effective in capturing the motion and
appearance information for human activity recognition. From
the experiment results shown in Table IV, BoVW with dense
trajectory features obtains much better results than with STIPs
features.

In this part, we explore incorporating dense features into
LHM, which combines the richness of low level features with
the descriptive and flexible power of LHM to further boost
recognition performance. In experiment, we use four kinds of
descriptors: HOG, HOF, MBHX, MBHY, and the codebook
size is 4,000. We obtain recognition performance of 59.9% for
the Hollywood2 Dataset and 83.2% for the Olympic Sports
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Fig. 8. Three examples of LHM’s learning results on the Olympic Sports Dataset. The numbers denote the indexes of frames in the video. Each video is
decomposed into sub-activities in a 1 − 3 − 9 structure. In each layer, video is divided into several segments, whose durations are determined in inference.
Each segment correspond to a learnt sub-activity, where the color lines indicate the durations of sub-activities. From the result, we see that our LHM can
automatically decompose complex activity into several sub-activities hierarchically. Each complex activity video is represented as a whole segment in root
node and it is divided into several sub-activities in the middle layer. Each sub-activity is further decomposed into more primitive actions in the bottom layer.

Dataset. For the Hollywood2 Dataset, the action types are
relative simple and there are no complex temporal structures
in them. Thus, there is only slight improvement for LHM

compared with BoVW. However, for the Olympic Sports
Dataset, the advantage of LHM is more evident and LHM
obtains considerable performance improvement. Currently,
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Wang et al. [53] further improve their recognition performance
by incorporating structural information into BoVW framework
with spatiotemporal pyramids (STP) and obtain the best results
on the two datasets. Our LHM with dense trajectory features
are comparable to the best results on the Hollywood Dataset
and much better than the best results on the Olympic Sports
Dataset, even though we don’t consider any spatial information
in our model. In conclusion, dense features are more rich and
effective than STIPs. With dense features, we can further boost
the recognition performance of LHM and obtain the state-
of-the-art results on the challenging Hollywood2 Dataset and
Olympic Sports Dataset.

VI. CONCLUSION

This paper has proposed a Latent Hierarchical Model
(LHM) for classifying complex activities. LHM is a hierar-
chical model with deep structure, which decomposes activity
into sub-activities in a coarse-to-fine manner. We develop the
latent learning algorithm to estimate the parameters of LHM.
We also present a cascade inference algorithm to improve
activity classification efficiency. The starting and ending time
points of each sub-activity indicated by latent variables, are
determined automatically in inference process. LHM is flexible
and effective to deal with the duration variation and temporal
displacement of each sub-activity. The experimental results
show that the proposed method with dense features achieves
recognition performance superior or comparable to that of
the previous methods on two challenging action datasets: the
Hollywood2 and the Olympic Sports. In particular, LHM is
more suitable for activities with longer and more complex tem-
poral structure and gains considerable recognition performance
improvement.
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