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ABSTRACT

In this paper, we present a novel approach for multiclass
object detection by combining local appearances and con-
textual constraints. We first construct a multiclass Hough
forest of local patches, which can well deal with multiclass
object deformations and local appearance variations, due to
randomization and discrimination of the forest. Then, in
the object hypothesis space, a new multiclass context model
is proposed to capture relative location constraints, disam-
biguating appearance inputs in multiclass object detection.
Finally, multiclass objects are detected with a greedy search
algorithm efficiently. Experimental evaluations on two im-
age data sets show that the combination of local appearances
and context achieves state-of-the-art performance in multi-
class object detection.
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1. INTRODUCTION

Category-level object detection, i.e. predict the bounding
boxes of object instances of a class in a test image, has been
one of the most active areas in multimedia and computer vi-
sion. It has numerous applications such as driver assistance
for automobiles by detecting pedestrians [5] and digital cam-
era auto focus by using face detection [14]. There are two
leading approaches to solve this problem: sliding windows
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[5, 14] and Hough voting [7, 10, 11]. Sliding windows scan
over possible locations and scales, evaluate a classifier and
use post processing to detect objects. Unfortunately, this
procedure is a time-consuming work. Instead, Hough voting
parametrizes object hypothesis and lets each local part vote
for object centroid in the hypothesis space, greatly improv-
ing the detection efficiency. As a result, Hough voting has
been successfully adapted to the problem of part-based ob-
ject detection and obtained state-of-the-art results on some
popular data sets in the past years. In [10], Leibe et al.
introduce an implicit shape model(ISM), whose object part
model is a set of visual words obtained generatively by clus-
tering primitive image features. At running time, the inter-
est point descriptors are matched against the visual words
and each matching entry casts probabilistic votes about pos-
sible positions of the object in the scale space. In [7], Gall
et al. present a discriminative Hough voting method called
Hough forest for object detection. Rather than using a gen-
erative visual words, they learn a direct mapping between
the appearance of an image patch and its Hough votes for
object location.

Unlike single class object detection, there are less meth-
ods proposed for multiclass object detection [11, 6]. In
[11], Opelt et al. present an incremental learning frame-
work by combining shape features and local appearances for
the problem of multiclass object detection. However, they
ignore the contextual information, i.e. global scene statistics
[13] or local interactions among objects [8] in the real world
scene, which plays an important role in multiclass object de-
tection. In [6], Desai et al. introduce an unified model for
multiclass object detection that casts the problem as a struc-
tured prediction task. Their model learns statistics which
capture the spatial arrangements of various object classes in
real images. However, their method is still based on slid-
ing windows and learns a window template for each object
class, which cannot deal with object deformations and local
appearance variations well .

In this paper, we present a novel approach for multiclass
object detection by combining local appearances and con-
text. We construct a multiclass Hough forest, which can
efficiently model object deformations and local appearance
variations. Meanwhile, contextual information, mainly the
relative locations of different object classes, is incorporated
into the multiclass Hough forest framework to disambiguate
appearance inputs. Finally, we use a greedy search algo-
rithm in the hypothesis space for multiclass object detection.
Since our model considers both local appearances and object



Figure 1: The detection processes of our approach.

interaction contexts, the greedy search algorithm efficiently
improves the detection accuracy.

2. OUR APPROACH

We present a novel approach for multiclass object detec-
tion by combining local appearances and context. First, we
establish a multiclass Hough forest and use local patches to
vote for the possible locations of different objects. Then, we
consider relative location constraints among objects in the
Hough voting space and improve detection accuracy (See
Fig. 1 for illustration).

2.1 Multiclass Hough Forest

Based on the single class Hough Forest proposed in [7], we
introduce a multiclass Hough forest which can be used for
multiclass object detection. Multiclass Hough forest is dif-
ferent from the single class Hough forest both in the training
and detection processes. First, during the training phase, we
train our forest by simultaneously modeling multiple object
categories and thus different object classes can share com-
mon features. Second, in the detection phase, multiclass ob-
jects of interest can be directly detected by a single round of
scanning over the image with our multiclass Hough forest.

Training data and leaf information. For our mul-
ticlass Hough forest, each tree 7 is constructed based on
a set of patches from multiple object categories: {P; =
(Z;,ci,di)}, where Z; is the appearance of a local patch,
¢; is the class label and ¢; € {0,1,...,|C|}, d; is the offset
of the patch. The training patches are randomly sampled
from the training image collection and some of them con-
tain examples of the class of interest with known bounding
boxes. The patches from the background are assigned the
class label ¢; = 0 and the ones from interest objects are as-
signed class labels ranging from 1 to |C|, where |C] is the
total number of object classes. Every object patch is as-
signed a 2D offset vector d;, indicating the relative location
of the patch from the object centroid.

For each leaf node L in the trees, the information about
patches reaching this node is stored. We first introduce a
portion list Pr, to remember the portions of different class
patches: Pr, = {po,p1,...,p|c|}, where p; is the portion
of the patches labeled with class . Then we construct an
offset matrix Dy, to store the offsets of different class patches:
Dy, = {di;}, where d; is the 5" patch offset labeled with
class 7. During the detection, the information is used to cast
probabilistic Hough votes about the existence of the object
at different positions (see Detection over scales).

Maulticlass tree construction. The construction of our
multiclass Hough forest follows the common random for-
est framework [4]. Each of the tree is constructed recur-
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sively from the root until the stopping conditions are sat-
isfied, e.g. the depth of a node is equal to maxima(dmaz)
or the number of the patches on a fixed node is relatively
small(Nmin). There are two key parts during the construc-
tion: binary test and evaluation of the binary test quality.
We use the same features and binary test with the single
Hough forest construction (see details in [7]). Meanwhile,
we adapt the following two uncertainties for a set of patches
A = {P; = (Z;,ci,d;)} to our multiclass Hough forest to
evaluate the binary test quality: class-label uncertainty and
offset uncertainty. The class label uncertainty is defined as
follows:
IC]

szlo.g*

where |A| is the size of set A and p; is the probability of
class i. Then the offset uncertainty is defined as :

Ui(A) = |A] x (1)

IC]

=>. >

i=1 jicj=1

dAI (2)

where da; is the mean offset vector over all the patches
labeled with i. Finally, the split criteria is the same to the
single Hough forest and we pick the binary test t* with the
minimal sum of the respective uncertainty:

arg min (U (P (Z) = 0) + U (P (Z) = 1)) ()

where x = 1 or 2 (depending on the random choice).

Detection over scales. During the detection phase, we
use the leaf information of our multiclass Hough forest to
vote for different class object centroids in the hypothesis
space. Consider a patch P(y) = (Z(y),c(y),d(y)) centered
at position y. We are now interested in the probabilistic
vote p(E(x), E(i)| Z(y)), which means the appearance Z(y)
of a patch casts for the possibility of detecting an object
of class i in position x. For a single tree 7, we define the
probability as follows:

p(E(x), EG)| Z(y); T) =

[ (y —x) —di |? pi_ (4
N Z 2102 exp{— 202 } % | Dt |
jidizeDL

where | D% | is the size of i*" row of matrix Dyr. For the whole
forest {7 }i_1, we just average the probabilistic vote coming
from different trees.

To deal with object scale variations, we resize a test image
to a scale space and detect by multiclass Hough forest in each
scale. Finally, we use the mean shift to find the maxima in
the scale space.

2.2 Context Model

Inspired by the work of Galleguillos et al. [8], we model
relative location constraints among multi-class objects in the
hypothesis space generated by the Hough voting and incor-
porates the spatial context to our multiclass Hough forest.

Modeling object relations. We use a subset of the La-
belMe data set [12] for the training and test in our context
model. The subset is mainly composed of street scenes. Like
[6], we classify object pairwise relationships into five groups:
ontop, far, next to, above and below (See Fig.2 ). For each
object pairwise relationship R*(i = 1,2,3,4,5), we define a
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Figure 2: The location relationship between objects.

relationship matrix ®°, which captures the probability dis-
tribution of object class pairwises. The probability of an
object class pairwise < m,n > (m,n = 1,---,|C|) in the
location relationship R’ is defined as follows:

p(<m,n >;0") = exp{ @i }

1
7(®7) ®)
where ®° is the relationship matrix and ¢%,, is the entry
(m,n) in the relationship matrix. Z(®°) is the partition
function. An object class pairwise < m,n >€ R’ means
two objects of class m and n satisfy the i*" relative location
constraint illustrated in Fig.2. Thus given a data set D, the
probability of relationship R’ is :

ICl 1Cl

exp{ Z Z lmn‘ﬁmn}

m=1n=1

P(D; ) = St ©)

where I,,, is the entry (m,n) of a frequency matrix for spa-
tial relationship R’ in the data set D, which counts the times
object pairwise < m,n > appears in a training image, satis-
fying relationship R’, and M® is the total number of object
pairwise of relationship R’.

Learning model parameters. Given a data set D, we
wish to find ®¢ maximizes the log likelihood of the observed
object pairwise:

[eile] ‘ ,
= > ln®mn — M' x log Z(2")

m=1n=1

(7
Since we must evaluate the partition function, maximizing
the log likelihood is intractable. Like [8], we approximate
the partition function using Monte Carlo integration. The
importance sampling is used and the proposal distribution
is equal to their observed frequency. Thus we can use the
gradient descent to find ®¢, which approximately optimizes
the likelihood, and the gradient is as follows:

L(®") = log p(D; ®")

1 7
1 el

Vi L(®)) = (8)

lien licyel

Due to the noise of estimating the partition function, it is
difficult to check for the convergence and we adopt the same
trick with [8]: training is terminated when 10 iterations of
gradient decent go not yield averagely improved likelihood
over the previous 10.

Greedy search method. Based on the candidates, i.e.
some local maxima, in the object hypothesis space produced
by the multiclass Hough forest, we propose a greedy search
algorithm, which well combines local appearances and con-
text for multiclass object detection. First, we define the
probability P(x,c) as:

P(x,¢) = aPapp(x,¢) + (1 — &) Peon(x,¢) 9)

1163

Table 1: Greedy Search Algorithm.
Algorithm Greedy search for multiclass object detec-
tion by combining appearances and context.

Input. Some candidates: (x1,¢1),- -, (Xn,cn) with the
appearance probability: Papp(X1,¢1), -y Papp(Xn, Cn).
Setpl. Set R = () and initialize the context probability
Peon(x1,¢1),+ y Peon(Xn, ¢n) to be zero.

Step2. Search for (x.,c.) = argmax(y .,)gr P(Xi, i)
If P(x«,¢4) > 0, R = RU {(x«,cs)}, where 0 is the
detection threshold. Else stop.

Step3. For the remaining candidates, update the con-
text probability:

exp{¢¢;c. }
Z(3%)

Y (M — 1) Peon(x5,¢5)) +

Peon(xj,¢5) =
where M is number of detecting objects and * €
{1,---,5}. Go to Step2.

Output. The detection result R = {(x;,¢;)}.

where P(x,c) is the probability that an object of class c is
present at position x, Pupp(X, ¢) indicates the evidence from
local appearances and Peon (X, ¢) means the one from contex-
tual information, « is a weight factor between appearances
and context. For each candidate (x;,c¢;), the probability
Popp(xi,¢;) is calculated according to the Hough vote re-
sults and the probability Peon(X:,c;) is the average of the
object pairwise probability p(< ¢;,j >) with other objects.
Then, we propose a greedy search algorithm to find object
class labels for the candidates (see Table 1. for details).

3. EXPERIMENTS

9 classes data set. We first collect a data set of 9
classes: Face, Plane, Motorbike, CarRear [9], CarSide [1],
TUD pedestrian [2], CowSide [10], Weizmann Horse [3] and
Bottles (from Google Image) to evaluate the detection ac-
curacy of multiclass Hough forest. Each class has 200 train-
ing images and 100 test images. We extract 50 patches
from each training image and train a multiclass Hough for-
est composed of 15 trees with dpee = 20 and Npin =
20. Then we use the multiclass Hough forest to detect the
9 classes objects in test images. See Fig. 3 for the de-

tection results(precision = “umof right detections .o.q17 —

num of total detections’
num of right detections . .
mum of total instances ). It is very encouraging that the de-

tection precision is averagely higher than 0.8 for the 9 classes
objects and even achieves a higher rate for some rigid object
classes such as CarSide and Motobike. It indicates that the
multiclass Hough forest is robust and efficient for multiclass
object detection.

08

Figure 3: The detection result in 9 classes data set.



(b) Multiclass object detection results with the context model.

Figure 4: Examples of multiclass detection result in LabelMe data set.

Subset of LabelMe. Then, we use a subset of LabelMe
data set [12] which is composed of 500 training images and
100 test images to evaluate whether our method is efficient
for real world scenes. The subset is mainly composed of
street scenes and we consider 6 class objects of interest in
the scenes: Window, CarRear, CarSide, Pedestrian, Pole
and Road. We use the object pairwise frequency matrix of
the subset to train our context model. During the detec-
tion phase, we conduct two kinds of experiments: detection
without context model and detection with context model.
See Fig. 4 and Fig. 5 for the detection results. From the
experiments, we find our multiclass Hough forest can accu-
rately detect some rigid classes of objects from real scenes
such as: Window, CarSide and Road. Meanwhile, from the
left confusion matrix in Fig. 5, we find there exist wrongly
detected instances or missed classes, such as Pedestrian and
Pole. This is caused by the great variations or high defor-
mations of the objects of these classes. After incorporating
object relative location constraints with the appearances, we
can successfully avoid such wrong detections and effectively
decrease the false positive rate. The right confusion matrix
in Fig. 5 illustrates our analysis.

One shortcoming of our method is the context model can
now only help avoid wrong results after multiclass Hough
forest detection, but can not improve the voting accuracy of
our multiclass Hough forest (e.g. the missed instances due
to occlusion in the last column in Fig. 4). The main reason
is that our proposed greedy search algorithm is based on the
local maxima in the hypothesis space and thus we can not
find new instances if the votes are small. In the future work,
we may consider combine our Hough forest and the context
model into an unified model to solve the above problem.
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