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a b s t r a c t 

Semantic image segmentation is challenging due to the large intra-class variations and the complex spa- 

tial layouts inside natural scenes. This paper investigates this problem by designing a new deep architec- 

ture, called multiscale sum-product network (MSPN), which utilizes multiscale unary potentials as the inputs 

and models the spatial layouts of image content in a hierarchical manner. That is, the proposed MSPN 

models the joint distribution of multiscale unary potentials and object classes instead of single unary 

potentials in popular settings. Besides, MSPN characterizes scene spatial layouts in a fine-to-coarse man- 

ner to enforce the consistency in labeling. Multiscale unary potentials at different scales can thus help 

overcome semantic ambiguities caused by only evaluating single local regions, while long-range spatial 

correlations can further refine image labeling. In addition, higher orders are able to pose the constraints 

among labels. By this way, multi-scale unary potentials, long-range spatial correlations, higher-order pri- 

ors are well modeled under the uniform framework in MSPN. We conduct experiments on two challeng- 

ing benchmarks consisting of the MSRC-21 dataset and the SIFT FLOW dataset. The results demonstrate 

the superior performance of our method comparing with the previous graphical models for understand- 

ing scene images. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Natural scene image understanding, which aims at labeling each

ixel of a scene image to a predefined object class and simultane-

usly performing segmentation or recognition of multiple objects

hat occur in the scene, has been extensively studied in the past

ears ( Farabet, Couprie, Najman, & LeCun, 2013; Gritti, Damkat,

 Monaci, 2013; Liu, Xu, & Feng, 2011; Rincón, Bachiller, & Mira,

005; Shotton, Winn, Rother, & Criminisi, 2009; Tighe & Lazeb-

ik, 2013; Tu, Chen, Yuille, & Zhu, 2005; Yin, Jiao, Chai, & Fang,

015 ). However, since even the objects of the same class tend to

xhibit large intra-class variations in natural scenes, automatically

roviding satisfying high-level semantics from complex images

s still a very challenging task. With the recent development of
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ision-based hardware and network techniques, it becomes an

ctive research topic and has attracted more and more researchers

n computer vision and pattern recognition community. 

Fortunately, in addition to low-level cues, most natural scene

mages contain intrinsic spatial structures, namely, scene contex-

ual information. Thus the state-of-the-art approaches consider the

patial layout of each scene image as a kind of prior information

o improve image understanding results. These methods jointly

odel the low-level appearances of every single patch and the

patial structures between adjacent patch pairs through a unified

ramework. A common choice for spatial layout modeling is to

esort to graphical models typically like Conditional Random

ield (CRF) ( Krähenbühl & Koltun, 2011; Ladicky, Russell, Kohli,

 Torr, 2009 ), where nodes are built on image pixels or super-

ixels, while edges incorporate the second order priors like the

moothness between adjacent nodes. Then the problem of image

nderstanding is treated as Maximum-a-Posterior (MAP) inference

n the graphical model. These methods are particularly effective

or modeling the relationship between adjacent objects. However,

hey may not perform well for complex scene images due to
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Fig. 1. The pipeline of scene image understanding using the learned MSPN. Left: the original scene image. Middle-left: computing the multiscale unary potentials from the 

input image. Middle-right: inferring the label for each pixel inside the original scene image by maximizing the posterior with the learned MSPN, which can be conducted 

efficiently by a two-pass algorithm. Right: refining the results using over-segmented regions. 
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the following limitations. First, CRF with a grid structure has the

ability to utilize adjacent spatial relations, but cannot characterize

a wider range of spatial context constraints among non-adjacent

scene objects, which sometimes play a more important role than

adjacent relations in automatically understanding scene image

contents. For example, it is always hard to decide scene content

directly from local visual features due to their instabilities brought

by intensity, color, texture, illumination, occlusion and viewpoint

variations. Instead, by combining a wider range of spatial relations

on different scales, scene content understanding results can be

greatly improved. Unfortunately, how to combine both the adja-

cent (short-range) and the nonadjacent (long-range) spatial layouts

of image content to enforce the consistency of scene image parsing

with such graphical models is still admittedly a hard problem. Sec-

ond, the inference and training of some complex graphical models

may be inefficient, which make the use of graphical models in

real-life computer vision related applications inflexible and diffi-

cult. For example, CRF with a full connected structure is often hard

to infer and train ( Farabet et al., 2013 ). Finally, the state-of-the-art

graphical models often face the difficulty on how to integrate

high-order object shape priors, which are essential in parsing or

understanding image semantics accurately. However, object shape

priors sometimes are not well integrated into such models. 

In our previous research, we explored scene image co-

segmentation by a topic-level random walk framework ( Yuan, Lu,

& Shivakumara, 2014 ) and object category discovery in natural

scenes using a context-aware graphical model ( Yuan & Lu, 2014 ).

To further address the discussed issues in visual scene image un-

derstanding, this paper proposes a novel deep architecture named

Multiscale Sum-Product Network (MSPN), which can be viewed as

a stacked sum-product network (SPN) ( Poon & Domingos, 2011 ) to

jointly model the distribution over image-level labels and unary

potentials from different scene scales. Due to the deep structure of

MSPN, the proposed model is able to characterize both the local

(short-range) and the global (long-range) spatial relations on dif-

ferent scales from pixel-level, patch-level to image level through a

hierarchical manner for better parsing the semantics from complex

scene images. Ideally, the combination of both the two types of

spatial relations can help understand scene images more accurately

since long-range interactions among image patches can be well

characterized by MSPN. Additionally, by stacked MSPN, we have

the ability to characterize high-order relations among pixels in a

flexible and implicit way. To the best of our knowledge, this is the

first work by introducing the conceptual deep sum-product net-

work into scene image understanding or content parsing research

to reduce the instabilities brought by the unpredictable variations

of low-level local visual appearances. 

In our architecture, the product operation models various cor-

relations between every two adjacent patches, on which the sum

operation further integrates these correlations into the “feature” of

a larger patch. On the bottom layer of MSPN, an SPN is designed

for each patch to model the joint distribution over the unary po-
 t  
entials and image labels from the previous scale, aiming at mod-

ling the local context information within the image patch. On the

p layer of MSPN, a global SPN is proposed for the whole image,

ggregating the information from all the SPNs of the patches on

he bottom layer, the unary potentials and image labels. Thus, the

p layer of MSPN is able to capture long-range interactions among

mage patches and thereby successfully models the global context

nformation of image content for parsing complex scene semantics

ore accurately. 

In addition to the deep modeling of spatial layouts in every

cene, MSPN also allows for efficient inference during the testing

hase, which benefits from the fact that the proposed MSPN is a

eep tractable model and only contains relatively simple product

nd max operations. This is particularly useful for designing real-

ife systems with a much lower computational load. We show the

verall pipeline for understanding the semantics of an unknown

cene image in Fig. 1 , where we first compute the multiscale unary

otentials (middle-left in Fig. 1 ), and then infer the label for each

ixel inside it by maximizing the posterior with the learned MSPN

middle-right), which can be conducted efficiently by a two-pass

lgorithm. Finally, scene image understanding results will be fur-

her refined by using the over-segmented region information from

he original scene image (right). 

Our main contributions are two-folds: (1) a novel deep net-

ork framework named MSPN is proposed to perform semantic

mage segmentation by a more effective and efficient way com-

aring with the popular graphic models; and (2) the architecture

f MSPN is elaborately designed to model multi-scale features, ei-

her local or global spatial layout of any scene image, and higher-

rder priors under an unified framework. The results on two popu-

ar benchmarks show that the proposed MSPN addresses semantic

mage segmentation effectively. 

The rest of the paper is organized as follows. Section 2 dis-

usses the related work. In Section 3 , we introduce the structure

f MSPN. Section 4 gives the training and inference methods for

cene image understanding. Experimental results and discussions

re given in Section 5 , and finally Section 6 concludes the proposed

odel. 

. Related work 

The problem of image understanding or parsing has been ex-

ensively studied in the previous research, and the existing ap-

roaches can be roughly classified into three categories, namely,

ottom-up scoring, top-down refinement, and region label reason-

ng. 

In bottom-up scoring methods , a fairly large number of object

ypotheses is first generated and then low-level color, texture and

hape features are used on these segments for classifying object

egions. For example, Gu, Lim, Arbelaez, and Malik (2009) present

 unified max-margin framework for object detection, segmenta-

ion, and classification using region-based features, from which the
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hape and scale information of objects are naturally encoded. In

heir recent work ( Arbelaez et al., 2012 ), the problem of segment-

ng and recognizing scene objects is performed by producing class-

pecific scores for bottom-up regions and aggregating the votes of

ultiple overlapping candidates through pixel classification. How-

ver, bottom-up segmentation at object level is still an ill-defined

roblem since shape and texture in regions tend to exhibit large

ntra-class variations in their appearances. Carreira, Li, and Smin-

hisescu (2012) present a pipeline that combines multiple figure-

round hypotheses, which are generated by bottom-up computa-

ional processes without exploiting the knowledge of specific cate-

ories. Differing from other methods, image parsing is formulated

s a regression problem, producing a globally consistent ranking

ith close ties to segment quality. Similarly, ( Vijayanarasimhan &

rauman, 2011 ) propose a branch-and-cut strategy by determin-

ng the subset of spatially contiguous regions whose collective fea-

ures will maximize a classifier’s score in over-segmented images

 Farabet et al., 2013; Shotton et al., 2009; Tighe & Lazebnik, 2013;

u et al., 2005 ). 

As for humans object recognition and analysis in image under-

tanding are heavily interwined, thus top-down refinement meth-

ds segment an image using shape priors predicted by statistical

hape models. Leibe and Schiele (2003) use a probabilistic formu-

ation to incorporate knowledge about the recognised category as

ell as the supporting information in the image to segment objects

rom the background. Malisiewicz, Gupta, and Efros (2011) learn

 separate classifier for each exemplar that is represented using

 grid HOG template, aiming at combining the effectiveness of a

iscriminative object detector with the explicit correspondence of-

ered by a nearest-neighbor scheme. However, the class and even

he coarse pose of an object as well as its existence are actually

trong assumptions and thus can be hardly satisfied in practice.

ometimes top-down information is also obtained from contempo-

ary object detectors. For example, contemporary object detectors,

ach of which has a rich part structure to provide an excellent ba-

is for top-down image parsing, are run on a subsampled grid for

bject segmentation in ( Brox, Bourdev, Maji, & Malik, 2011 ). Note

hat in top-down methods, bottom-up cues are often accompanied

owards higher precision. Han and Zhu (2009) present a genera-

ive representation for man-made scene objects such as buildings,

allways, kitchens and living rooms using attribute graph gram-

ar, in which the bottom-up step detects an excessive number of

ectangles as weighted components and top-down predications of

ccluded or missing components are activated through a group of

rammar rules. 

Region label reasoning methods use different kinds of models

o ensure the consistency of labels during parsing ( Brox et al.,

011; He, Zemel, & Carreira-Perpiñán, 2004; Kohli, Ladicky, &

orr, 2008; Kohli, Osokin, & Jegelka, 2013; Ladicky et al., 2009 ).

hotton et al. (2009) propose to use CRF model to jointly model

atch texture, layout and context for image labeling. Hierarchical

onnection ( He et al., 2004 ) or higher-order potentials ( Kohli et al.,

008 ) to enforce label consistency have also been incorporated to

mprove the accuracy. Recently, Krähenbühl and Koltun (2011) pro-

ose a fully connected CRF with Gaussian edge potentials to-

ether with a highly efficient approximate inference algorithm.

n addition to CRF, generative models such as MRF have also

een explored ( Kohli & Kumar, 2010 ). Additionally, Todorovic and

echyba (2007) address the problem of object detection and recog-

ition in complex scenes by generative dynamic tree-structure be-

ief networks. In the recent work ( Steinberg, Pizarro, & Williams,

015 ), hierarchical Bayesian models for unsupervised scene under-

tanding are also proposed. Recently, deep models have also been

eployed in exploring the labeling problem by modeling image pri-

rs. In ( Eslami, Heess, & Winn, 2012 ), Shape Boltzmann Machine

SBM) is presented for modeling binary object masks. For exam-
le, Chen, Yu, Hu, and Zeng (2013) use the deep Boltzmann ma-

hine to learn the hierarchical architecture of shape priors. Sum

roduct network is a new deep architecture proposed for modeling

he probability distribution with variables as leaves, while sum and

roduct operations are described as internal nodes and weighted

dges ( Poon & Domingos, 2011 ). The learning and inference of such

 network is much faster and more accurate than other deep mod-

ls. Sum product networks have been adopted in particular vision

omputation tasks like ( Amer & Todorovic, 2012; Gens & Domin-

os, 2012; Luo, Wang, & Tang, 2013; Poon & Domingos, 2011 ). For

xample, Poon and Domingos (2011) propose the SPN and veri-

ed its superior performance to other deep models in image com-

letion. Gens and Domingos (2012) present a discriminative train-

ng algorithm for the generative SPN. They demonstrate the advan-

ages of discriminative learning of SPN in the image classification

ask. Amer and Todorovic (2012) use SPN to model the stochas-

ic structure in videos and adopt this method to action recogni-

ion. Luo et al. (2013) propose a deep sum-product architecture to

odel the correlations among facial attribute and proved its ef-

ectiveness in robust attribute estimation. However, none of these

esearch focuses on exploring image semantics for scene content

nderstanding. 

. Multiscale sum-product network for scene understanding 

To model both the short-range scene context for every image

atch and the long-range scene context among different patches,

e put forward MSPN to characterize these correlations. Essen-

ially, our MSPN can be considered as a stacked SPN as introduced.

he SPN on the bottom layer aims at modeling local context for

ach scene image patch, while the SPN on the upper layer makes

se of the output of the bottom layer, namely, local correlations in-

ide patches, and the unary potentials on this scale to characterize

ong-range correlations among patches. The process can be itera-

ively repeated until each patch is corresponded to the overall im-

ge, and the SPN on the lower layer can be regarded as the input

f the upper SPN in the proposed network. The iterative process

ere indicates that the patches on the lower layer will be com-

osed into larger ones on the higher layer, and the interaction re-

ationships will be modeled accordingly. This process is iteratively

epeated until finally there is only one patch, namely, the whole

mage, on the top layer. 

Note that both the short-range relations inside every scene im-

ge patch and the long-range relations among patches are mod-

led by different SPNs, respectively. The long-range interaction is

odeled in the middle layers of the upper-level SPN. That is, the

nteraction of two patches is modeled by the connection of their

ncestral product nodes to a common sum node in a hierarchical

ay. In another word, the joint probability over { Y, �} is 

 ( Y , �) = 

∑ 

i 1 ∈{ 0 , 1 } N , i 2 ∈ (0 , 1) N 

(
P ( i 1 , i 2 ) · 1 (Y = i 1 ) · 1 (� = i 2 ) 

)
(1)

here Y and � denote the labels and the unary potential variables

nside a patch, respectively, and P is represented by the network

olynomial ( Darwiche, 2003 ). Here i 1 and i 2 denote all possible val-

es of Y and �, respectively. Thus as in ( Poon & Domingos, 2011 ),

he distribution P can be represented by an SPN, namely, a rooted

irected acyclic graph, in which the leaves are indicators 1 (x i = 1)

nd 1 (x i = 0) , where x i is any variable in Y or �, the internal

odes of which are sums and products. Each edge ( i, j ) emanat-

ng from a sum node i has a non-negative weight ω ij . The value of

 product node is the product of the values of its children. Then

he value of a sum node is �j ∈ Ch ( i ) ω ij v j , where Ch ( i ) is the chil-

ren of i and v j is the value of node j . The value of an SPN is thus

he value of its root. Thereby, the key to model the short-range or

ong-range correlations inside each complex scene is converted to
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Fig. 2. The illustration of MSPN. Left: we give an overview of MSPN for modeling the joint distribution over image labels and unary potentials from multiscales. MSPN 

can be divided into two layers, where the bottom layer mainly models the correlations within each local patch, and the up layer captures the interactions among patches. 

Middle: we provide a detailed description of the SPN structure on the bottom layer. It is organized in a hierarchical manner, modeling the correlations from adjacent pixels 

to the whole patch. Right: the difference between the SPNs on the up layer and the bottom layer lies on the network inputs and the number of root nodes. We give the 

network structure of the up layer to handle three inputs: image labels, unary potentials, and the sum nodes from bottom layer. 
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the problem of how to construct the SPN for each layer. On the

other side, if we have joint probability P ( Y, �) over { Y, �} for any

entire image, the scene understanding task will thereby be turned

out to be the inference of the posterior distribution P ( Y | �) since

� of each scale denotes observable variables. We will give the de-

tails on multiscale unary potentials, the proposed multiscale sum-

product network, and the pipeline for scene image understanding

in the following sub-sections. 

3.1. Obtaining multiscale unary potentials 

Unary potentials in MSPN evaluate the compatibility of a label

y c assigned to a local scene structure (superpixel, pixel or patch),

which is usually modeled by classifier responses. Traditional unary

potentials are designed only on the raw scale, which is sensitive to

the variations of visual appearances and may be greatly influenced

by semantic ambiguity. Intuitively, unary potentials incorporating

multiple scales can leverage the different context around each local

image structure, and hence assist making more precise predictions

on their high-level semantics. In general, any pixel-level unary po-

tential can be adopted into the proposed MSPN framework. We

choose the Textonboost ( Shotton et al., 2009 ) technique to build

our multiscale unary potentials. Specifically, we first reshape all

the training images into pyramids with different scales of s ∈ {1, 2,

... S }, where S is the number of scales. Then we train a number of

pixel-level Textonboost classifiers on each of these scales. For every

input image, we collect the response maps from different { φs } S 
s =1 

as our multiscale unary potentials. The response maps from the

raw-scale produce the pixel-level unary potentials and those from

coarser-scales are used to generate patch-level unary potentials. 

3.2. Multiscale sum-product network structure 

In our framework, we use a two-layer MSPN as shown in Fig. 2

for modeling the joint distribution over image labels and unary po-

tentials from multiscales. That is, the proposed MSPN can be di-

vided into two layers, where the bottom layer mainly models the

correlations for each local patch, and the up layer captures the in-

teractions among patches. The overview of the proposed MSPN is

shown by the left of Fig. 2 . We also provide a detailed descrip-

tion of the SPN structure on the bottom layer. It is organized in a

hierarchical manner, modeling the correlations from adjacent pix-

els to the whole patch (middle of Fig. 2 ). The difference between

the SPNs on the up layer and the bottom layer lies on the net-
ork inputs and the number of root nodes. That is, on the bottom

ayer of MSPN, SPNs are used to model the distributions of labels

nd potentials in different disjoint N × N patches. In each SPN, the

ottom layer models the correlation of two adjacent pixels (cor-

esponding to a 1 × 2 patch) by different product nodes. On the

econd layer, these product nodes in the 1 × 2 patch connect to

ome sum nodes representing different mixtures of the joint distri-

ution in the 1 × 2 patch (like Gaussian mixture). The two-stage

onstruction is iterated to combine any smaller adjacent patches

ntil it reaches the root N × N patch. We also show the graphical

etwork structure of the up layer to handle three inputs: image la-

els, unary potentials, and the sum nodes from the bottom layer

right). 

Bottom layer representation. The middle of Fig. 2 gives a de-

ailed description about the structure of the SPN used by the bot-

om layer of MSPN. It models the joint distribution over pixel

abels and unary potentials within each local patch. We choose

he patch size as 4 and suppose there are altogether C object

lasses. The inputs are the label indicator function { Y 1 , Y 2 ,…, Y C }

nd the normalized unary potentials { φ1 , φ2 ,…, φC } of each pixel.

egarding the structure of the network, it is organized in a hi-

rarchical manner, modeling the correlations from adjacent pix-

ls to the whole patch. On layer 1 , we use the product node to

odel the correlations of labels and potentials from adjacent pix-

ls. Here the label indicator function is coupled with its corre-

ponding unary potentials, i.e., we only consider the correlation

etween the label indicator function and its corresponding unary

otential. Thus, for a pair of adjacent pixels, there are C 2 prod-

ct nodes to model the correlations. For a patch of size 4, there

re totally 4 pairs of adjacent pixels. Thus, the number of the

roduct nodes on layer 1 is 4 × C 2 and each product node falls

nto a 1 × 2 patch. On layer 2 , we use sum nodes (in 1 × 2

atches) to model the mixture of different kinds of correlations

n the same pixel pair by connecting all the product nodes from

he same patch. The number of the sum nodes on this layer can

e set manually. On the above layer , similarly a product node con-

ects the sum nodes from the adjacent patches on the previous

ayer, while a sum node connects the product node belonging to

he same patch. This process can be repeated until the root node

orresponding to the whole patch are reached. Intuitively, each

um node belongs to an image patch and can be viewed as the

feature” of this patch, while each product node connects two ad-

acent pixels (or patches) and models the correlations between

hem. 
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Fig. 3. An example of the deep model over two random variables { X 1 , X 2 }. The left figure ( Poon & Domingos, 2011 ) shows the calculation of marginal probability P(X 1 = 1) . 

The other two figures show the two passes for inferring the unobserved variable X 2 using most probable explanation (MPE) when X 1 is observed as 1. 
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Up layer representation. The upper layer of MSPN models the

orrelations among patches. It takes the unary potentials and the

mage labels on the second scale, and the sum nodes from the bot-

om layer as the inputs. In essence, the structure of the network

n this layer is quite similar to that of the bottom layer except

hat there is only one root node, which models the interactions

etween patches in a hierarchical way from the adjacent patches

ntil to the whole scene. Considering the sum nodes from the bot-

om layer, we handle this input separately for the up layer. The

ight of Fig. 2 gives the detailed illustration of the network struc-

ure for handling the inputs. That is, on layer 1 , we use product

odes to model the correlations between the coupled image la-

els, the unary potentials, and one of its corresponding sum nodes

rom the bottom layer. Then on layer 2 , we use sum nodes to con-

ect the product nodes from the same patch. In addition to the

ifference of handling the inputs and the number of root nodes,

he structure of the SPN on the up layer is the same with that of

he bottom layer. 

Note that there should not be over-counting in the proposed

SPN model. First, the proposed MSPN is more like a tree struc-

ure built on the bottom layer, which is used to predict pixel la-

els. Since MSPN is purely a semantic model, it can be combined

ith segmentation-based refinement to supplement precise con-

our information, which is not used to merge predictions. Second,

e count multiscale labels combined with corresponding unaries

o train the proposed MSPN model. For each input layer, the labels

epresent the evidence from a specific scale. For other layers, all

he combinations of the labels from lower layers are modeled. 

.3. Scene image understanding via MSPN 

For scene image understanding, we first generate the multi-

cale unary potentials for any input unknown scene image using

he method described in Section 3.1 . Note that during the training

hase, we jointly model the distribution P ( Y , �) over multiscale

mage labels Y and multiscale unary potentials � using MSPN.

hen during testing phase, we infer image labels given the mul-

iscale unary potentials �: 

 

∗ = arg max 
Y 

= P (Y | �) = arg max 
Y 

S(Y, �) 

S(�) Y = 1 
(2)

here S ( Y, �) is MSPN value, and S(�) Y = 1 is a constant when

iven a specific � by marginalizing over Y . Since the structure of

ur MSPN is also composed of interleaved sum and max nodes, the

ost Probable Explanation (MPE) can be efficiently conducted by

 two-pass algorithm. Finally, we refine the inference results using

he superpixel cues as shown in Fig. 1 . 

The details are as follows. We use an oracle example to

how how the two-pass algorithm works. Fig. 3 shows an ex-

mple of the deep network for two variables X = (X 1 , X 2 ) , where

e denote the indicator function 1 (x = 1) as X and 1 (x =
i i i 
) as X i . To start, we show how the network is convenient

o compute the marginal probability. For instance, when X 1 

s observed as 1 and X 2 is unobserved, the marginal proba-

ility P (X 1 = 1) = S(1 , 0 , 1 , 1) = 0 . 7 ∗ (1 ∗ 0 . 6 + 0 ∗ 0 . 4) ∗ (1 ∗ 0 . 3 +
 ∗ 0 . 7) + 0 . 3 ∗ (1 ∗ 0 . 9 + 0 ∗ 0 . 1) ∗ (1 ∗ 0 . 2 + 1 ∗ 0 . 8) = 0 . 69 . In ad-

itional to marginal probability, we can also efficiently infer the

nobserved variable using MPE in the network. We first replace

he SUM node with the MAX node in the network and then con-

uct a two-pass inference procedure. In the first pass, we compute

he value of each node in a bottom-up manner and in the second

ass, we backtrack along the path that the MAX operation selects

ntil the leaf node is reached. For the example, in Fig. 3 , the MPE

f X 2 is 0 when X 1 = 1 . 

Finally, the image understanding results can also be refined by

versegmentations on the original scene image. This is because

oth the multiscale unary potentials and MSPN focus on making

ixel-level or patch-level predictions, which usually contain noises

nd lack precise delineation of objects. Superpixels generated from

ottom-up segmentation can help capture object boundaries and

aintain local consistency, which are visually perceptive and com-

lementary for our MSPN results. Since the bottom-up segmen-

ation suffers the lack of semantics, some of its superpixels may

ontain several object parts. To obtain proper superpixels, we vary

he parameters of the segmentation algorithm to generate multi-

le overlapping superpixels. Then each pixel is contained by sev-

ral superpixels, which forms multiple local context to analyze our

SPN results. Thus the pixel label prediction can be refined as: 

 

′ ( j) = D (Q 

∗) , Q 

∗ = arg min 

Q, j∈ Q 
E(Q ) / log (A (Q )) (3)

here j is the pixel for predicting contained by superpixel Q, E ( Q )

s the entropy of the distribution of the MPSN predicting labels

ithin Q, A ( Q ) is the area of Q , and D ( Q ) is the dominant label

ithin Q . Note that for each superpixel containing the target pixel,

e compute the score and select the minimum directly. Then the

redicted label is refined by the dominant one within the selected

uperpixel. Additionally, the SPNs of each layer in the proposed

SPN actually model the distribution of patches with a specific

cale. Therefore, SPNs of smaller patches are input to those of the

arger patches that cover the smaller ones. This is our intention to

esign the proposed MSPN since SPNs of different levels can model

etailed and specific characteristics of corresponding granularity. 

. Learning multiscale sum-product network 

In the proposed MSPN, generally there are a large number of

odes and densely connected edges. For a certain dataset with im-

ges I = { I i } N i =1 
, corresponding groundtruth { Y i } N i =1 

and multiscale

nary potentials { �i } N i =1 
, our goal is to obtain the learned MSPN

hat is parameterized by proper weights and structures to best ex-

lain the training dataset. For this purpose, we learn the MSPN in
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a generative fashion, aiming at maximizing the following log like-

lihood: 

ω = arg max 
ω 

N ∑ 

i =1 

log P (Y i , �i ;ω) (4)

where the joint probability P ( Y i , �i ; ω) is modeled by MSPN. The

learning algorithm is summarized in Algorithm 1 , in which the

Algorithm 1. Learning MSPN. 

Input: Training images I = { I i } , and corresponding groundtruth { y i }
Output: MSPN with learned structure and parameters ω

1: for all I i ∈ I do 

2: Compute multiscale unary potential �i = { φs 
i 
} S 

s =1 

3: Generate multiscale image labels Y i = { y s 
i 
} S 

s =1 
4: end for 

5: Initialize ω and network architecture 

6: repeat 

7: Activate MSPN with �i and Y i by a upward pass 

8: E-step : Infer the MPE state of Y i by a downward pass 

9: M-step : Renormlize ω 

10: until convergence 

11: Prune edges with zero weights 

details are shown. Note that “renormlize” in step 9 is defined as

normalizing the sum of edge weights connected to the same sum

node to 1, and “convergence” in step 11 has the following two cri-

terion. The first is that the difference of current joint probability

and previous one is below a pre-defined threshold. The second is

that the number of iterations is beyond a pre-defined max one. 

Given a specific image goundtruth pair ( I i , y i ), we com-

pute the multiscale unary potential �i = { φs 
i 
} M 

s =1 
and multiscale

groundtruth Y i = { y s 
i 
} S 

s =1 
, where y s 

i 
(s ≥ 2) on the coarser-scale are

considered as the patch-level groundtruth on the raw scale s = 1 ,

which is generated by the distribution of y 1 
i 

within the patch.

MSPN can then be learned with a hard EM algorithm following

( Poon & Domingos, 2011 ). Initially, we maintain a count for each

edge protruding from sum nodes and each sum node maintains

the total count of its edge counts. Next, the proposed MSPN is ac-

tivated with { �i , Y i } by an upward pass, where the root value is

P ( Y i , �i ; ω). Then the E-step actually executes an MPE inference

as in Section 3.3 by a downward pass. In the M-step, the counts

of the edges in the inference patches are increased by 1 and the

weights are re-normalized as the ratio of the counts to maintain

the probabilistic explanation. Note that since the MSPN interleaves

sum nodes and products, the inference can be actually achieved by

the two-pass algorithm the same as the original SPN. 

The edge prune process in the last step of the loop is required.

The arbitrary combination of adjacent pixels or patches will bring

in a densely connected structure. For a dataset with the images of

size N × N and C class labels, there will be roughly N 

2 C 2 product

nodes on the bottom layer of MSPN and VN 

2 C 2 ( V is the number

of the sum nodes in one patch) edges connected to their parent

sum nodes. Generally, since the total number of the edges is far

beyond that of the patches in each image, the edge prune process

will assist us removing zero weight edges and non-parent nodes,

which saves the memory space and keeps the learning algorithm

efficient. Specifically, we prune the edges after the full EM iteration

by eliminating both the edges that connect sum nodes and product

nodes with zero weights, and the edges without connecting to any

parent node. 

Note that in the proposed model, we do not distinguish the two

kinds of variables, namely, Y and �, and treat both of them as

continuous ones. The weights of edges are also continuous ones,

which seem more like posterior probabilities of mixture compo-
ents. The sum and production operation do not change and thus

he inference and learning are the same as SPN. 

. Experiments 

We evaluate our method on two benchmarks consisting of the

SRC-21 dataset ( Shotton et al., 2009 ) and the SIFT FLOW dataset

 Liu, Yuen, & Torralba, 2009 ). As both these two datasets contain

 number of object classes organized with particular spatial lay-

uts, they are very suitable for evaluating the proposed scene un-

erstanding framework. The MSRC-21 dataset consists of 591 color

mages with the size of 213 × 320 pixels and the corresponding

roundtruth labels of altogether 21 classes. The SIFT FLOW dataset

s composed of 2688 color images with the size of 256 × 256 pix-

ls and 33 class labels roughly labeled by LabelMe users. 

Implementation details. We use the Textonboost

 Shotton et al., 2009 ) method to generate our multiscale unary

otentials. In our experiments, we choose the scale as 2 since it

s compatible with our two-layer stacked MSPN. The first scale

s for the raw data, while the second scale is set as the quarter

f the first one, which means 60 × 80 pixels for each of the

mages in the MSRC-21 dataset and 64 × 64 pixels for each of

he images in the SIFT FLOW dataset on the second scale. We use

our kinds of features, namely, color (3 channel features on the

ab space), hog, location (by relative coordinates), and texture (the

esponses from Gaussian filters) to train two texton dictionaries

ith respectively 128, 150, 144 and 400 entries. The dictionaries

re trained separately on two different scales. Then the images

re quantized into textons to train the Textonboost classifier. The

esulting scores are finally transformed into probabilities to feed

nto the proposed MSPN model. 

Due to the dense structure of MSPN, we first conduct down-

ampling for the multiscale unary potentials to reduce the possi-

le memory cost in computations. Specifically, the sizes of the first

cale unary potential are down-sampled as 120 × 160 pixels for

he images in the MSRC-21 dataset and 64 × 64 pixels for the im-

ges in the SIFT FLOW dataset. The sizes of the unary potentials on

he second scale are 30 × 40 and 16 × 16 for these two datasets,

espectively. Note that we set the patch size as 4 × 4 for both the

wo datasets. During testing, the results of MSPN are up-sampled

nto the original scale for evaluation and comparison. 

The number of the sum nodes in MSPN for input layers (pixel or

atch) is fixed to the number of classes, and the root layer (image)

as only one sum node. For remaining layers, we set the number

f the sum nodes as 25 to increase the descriptive power of MSPN

nd preserve the high efficiency as well. In the superpixel refine-

ent stage, we use ( Felzenszwalb & Huttenlocher, 2004 ) to gen-

rate superpixels due to its efficiency and shape preserving prop-

rty. Totally, we use 27 groups of fixed parameters to generate su-

erpixel maps. To study the effectiveness of MSPN, we compare

t with other two typical graphical model baselines, namely, pair-

ise CRF and robust P N CRF ( Kohli et al., 2008 ). To verify the role

f the stages in our scene image understanding pipeline, we also

ompare the proposed MSPN with only one single scale (S-MSPN)

nd the MSPN without superpixel refinement (N-R-MSPN, namely,

on-Refinement-MSPN). Note that the maximal number of SPN

ayers is related to image resolution. Other hypeparameters are ad-

usted on a held-out dataset sampled from training images. Note

hat we do not use the held-out dataset in training stage. 

Results on the MSRC-21 dataset. We follow the same experi-

ent evaluation scheme in ( Shotton et al., 2009 ) for evaluations.

he multiscale unary potentials are learned on the training set.

e use two metrics to evaluate the parsing results, namely, the

lobal pixel-wise classification accuracy and the per-category clas-

ification accuracy. We also test our method by gradually adding

ach step in the pipeline and comparing with the two pairwise CRF
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Table 1 

Scene image understanding results on the MSRC-21 dataset. For each category, the pixel-wise classification accuracy is provided as well as its average. The last column 

provides the global pixel-wise classification accuracy. Bold entries indicate the best performances. We evaluate our method by adding each element in the pipeline and 

comparing with two other baselines and the other three state-of-the-art graphical model based methods. 

Building Grass Tree Cow Sheep Sky Airplane Water Face Car Bicycle Flower Sign Bird Book Chair Road Cat Dog Body Boat Average Global 

Unary coarse 63 86 79 61 62 84 69 67 72 67 73 89 78 25 93 38 74 81 56 69 21 67.0 74.6 

Unary fine 72 98 90 84 80 93 82 68 88 84 91 91 70 47 94 59 89 75 46 81 25 76.7 84.2 

S-MSPN 74 96 87 82 82 92 84 68 90 88 90 96 77 41 97 78 87 83 56 67 30 78.4 84.5 

MSPN 72 96 89 86 83 93 83 68 92 86 90 96 78 51 97 72 88 82 56 74 29 79.2 85.0 

N-R-MSPN 74 98 90 84 82 96 80 70 91 86 91 98 81 49 97 74 89 79 59 74 26 79.4 86.1 

Pairwise CRF 73 99 88 78 76 95 76 72 87 84 87 93 75 45 95 57 91 74 44 77 20 75.5 84.5 

P N CRF 73 98 90 85 81 94 82 68 89 85 91 92 71 48 94 60 89 76 47 81 24 77.1 84.6 

Hierarchical CRF 80 96 86 74 87 99 94 87 86 87 82 97 95 30 86 31 95 51 59 66 09 75 86 

Ladicky et al. (2010) 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20 77.0 87.0 

Boix et al. (2012) 66 87 84 81 83 93 81 82 78 86 94 96 87 48 90 81 82 82 75 70 52 80.0 83.0 

Yao et al. (2012) 71 98 90 79 86 93 88 86 90 84 94 98 76 53 97 71 89 83 55 68 17 79.3 86.2 

Lin and Xiao (2013) – – – – – – – – – – – – – – – – – – – – – 74.0 –

Ravì, Bober, Farinella, 

Guarnera, and Battiato 

(2016) 

42 92 77 88 92 92 85 63 91 72 77 73 34 30 92 45 80 78 37 57 24 68 80 
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nd robust P N CRF baselines. Besides, we compare our results with

ther three start-of-the-art graphical model based algorithms, that

s, Hierarchical CRF with co-occurrence potentials ( Ladicky, Russell,

ohli, & Torr, 2010 ), Harmony potentials ( Boix et al., 2012 ), and the

cene analysis method proposed in the recent research ( Yao, Fidler,

 Urtasun, 2012 ). 

The quantitive results are shown in Table 1 . We first explore

he effectiveness of the introduction of the deep architecture into

cene image understanding. From the comparisons between unary

otentials and S-MSPN, we observe that using the deep architec-

ure effectively improves the performances of label prediction both

n the global pixel-wise accuracy and the average per-category ac-

uracy. We also study the complementary property of unary po-

entials from different scales. We find that although the coarse-

cale (patch-level) unary potential is not precise, it can provide

xtra hints for some categories (e.g., cat, dog, and sign). We then

ompare the performances between MSPN and S-MSPN, and can

onclude that MSPN outperforms the latter on both the global

ixel-wise accuracy and the average per-category accuracy. It in-

icates the multiscale representation, including multiscale unary

otentials and multiscale modeling spatial layout, is an impor-

ant and essential cue for improving the accuracy of natural scene

mage understanding. Finally, we demonstrate the usefulness of

he proposed superpixel based refinement step, which can obtain

.1% improvement for the global accuracy averagely. This is be-

ause the parsing results of N-R-MSPN is not so smooth and some-

imes probably contains noise predictions inside objects or around

oundaries, which may be refined by the homogeneous superpix-

ls. Although the influence of superpixel based refinement varies

cross different object classes, it is able to increase the average

er-category accuracy according to our experiments on the MSRC-

1 dataset. Some example results are given in Fig. 4 . Note that the

efined MSPN has better pixel accuracy along boundaries, but it

lso has side effects that the small occupied objects may be fused

ith into larger objects and thus lose true labels. As a whole, the

efinement will improve the MSPN performance. 

In the second group of experiments, we compare our method

ith two other bottom-up methods, namely, pairwise CRF, robust

 

N CRF and hierarchical CRF ( Ladicky et al., 2009 ). The former

mooths label assignment within an edge window by evaluating

olor contrast, and the latter builds high order potentials on pixel

liques indicating by superpixels. Both of them focus on improv-

ng the consistency and pursue high-quality segmentation bound-

ries. In Fig. 4 , it can be seen that robust P N CRF can achieve high

onsistency segmentations, but can not correct the mis-predictions

f unary potentials. Since our MSPN can model object shapes and

heir spatial layouts, the missing parts (e.g., the cow, the head of
 human and the boat in Fig. 4 ) can be partly recovered. Addition-

lly, our MSPN learns high-order relations automatically in training

tage and perform better than those with empirical definition of

igher-order priors. As a result, the average per-category accuracy

f the proposed MSPN outperforms the other three methods by 2%

veragely. 

Finally, we compare our method with three other state-of-

he-art methods ( Ladicky et al., 2010 ), Boix et al. (2012) and

 Boix et al., 2012 ). These methods also use the CRF framework,

ut with more elaborately designed unary potentials. For exam-

le, Ladicky et al. (2010) model the co-occurrence between ob-

ect classes, Boix et al. (2012) incorporate class interactions, while

 Yao et al., 2012 ) integrate scene classification and object detec-

ion tasks. Comparing with ( Ladicky et al., 2010 ) that obtained the

est global accuracy, our method outperforms it on more than a

alf categories (e.g., cat, chair, and body). Our method also per-

orms better than ( Boix et al., 2012 ), which obtained the best av-

rage per-category accuracy. In addition, we compare the proposed

ethod with two recent works on MSRC-21 for semantic image

egmentation. Their public results are used for comparison. We can

nd that the performance of the proposed method is still better.

ote that the performance of ( Lin & Xiao, 2013 ) is far lower than

hose of the others. The main reason is that this method is a gen-

rative model without exploiting supervised information. Thus we

an say the proposed MSPN outperforms the recent methods for

nderstanding scene images. From the results, we can also fore-

ee that unifying all the cues are better than modeling only a part

f them. We also find that handcrafted higher-orders are some-

imes inferior to automatically discover knowledge among images.

herefore, modeling all the constraints between labels and appear-

nces together may be a better way to segment images, rather than

hose efforts only on learning representative features to increase

erformances. 

Results on the SIFT FLOW dataset. We also test our method

n the SIFT FLOW dataset following the same evaluation scheme

roposed in ( Liu et al., 2009 ). This dataset has 33 object classes in

otal. However, the class distribution in this dataset is very unbal-

nced. For example, the background elements (e.g., mountain, sky,

ree, grass) occupy a large ratio of the images, while several ob-

ect classes (e.g., bird and bus) appear much less frequently. The

xperimental results are shown in Table 2 . Due to class unbalance,

extonboost unary potential performs a bit worse on the dataset

ith the global pixel accuracy of 69.7%. However, with the pro-

osed MSPN, we can improve the global pixel accuracy to 72.9%

nd precisely predict most large scale scene objects that have reg-

lar spatial layouts inside the scene (e.g., building, sea, and moun-

ain). The performance of the proposed MSPN is still superior to
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Fig. 4. Scene image understanding result examples from the MSRC-21 dataset. Note we only show the raw-scale unary potential for the limited space. (a) Original images, 

(b) the groundtruth, (c) unary potential, (d) S-MSPN, (e) the proposed MSPN, (f) N-R-MSPN, and (g) Robust P N CRF. 

Table 2 

Scene image understanding results on another benchmark dataset SIFT FLOW. Pixel-level accuracies for scene 

understanding are provided both for our method and the two baselines, where bold entries indicate the best 

performance. 

Unary coarse Unary fine S-MSPN MSPN N-R-MSPN Pairwise P N Hierarchical 

Pixel Accu. 69 .7 66 .4 70 .9 71 .2 72 .9 70 .8 72 .3 72 .5 

Table 3 

The comparison of time complexity per image on SIFT FLOW dataset. 

MSPN Pairwise CRF P N CRF Hierarchical CRF 

Time 0.6s 0.8s 16s 8s 
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those of Pairwise CRF and P N CRF according the the experimental

results. 

Simultaneously, we also conduct the comparison of the aver-

age inference time. As we can see in Table 3 , our MSPN shows

the advantage over other CRF due to its tree structure and sim-

ple inference strategy. That is, our method differs with hierarchical

CRF models in that we do not use pre-computed unsupervised seg-

ments as high-level priors, which often make automatic semantic

image segmentation task much more complicated and sometimes

difficult to obtain. Additionally, the proposed MSPN can jointly

model the interactions in pixel or patch wises on each fine-to-coast

level, which will reduce the inclusion of misleading segmentations

or inaccuracy of other techniques. 
Robustness of MSPN. To further test the robustness of the pro-

osed MSPN for diverse realistic environments, we adopt two ex-

ra experiments for testing the images from two benchmarks by

dding more noises. That is, for each image from the two bench-

arks, we add Gaussian noises and illumination oscillations for the

ntire image by scaling RGB channels. In our implementation, we

dopt MATLAB to preprocess images. For Gaussian noises, the de-

ault setting with the mean 0 and variance 0.01, where numerical

alues correspond to normalized images, is adopted. As for illumi-

ation oscillation, given an image, we first sample a scale value

rom [0.9, 1.1], and then multiply it to all the RGB channels of ev-

ry pixel. Next, we perform N-R-MSPN on the two benchmarks.

ote that we do not process the training images and the validation

et. Thus the model is still trained on the original training images.

he results are shown in Table 4 . According to the results, the pro-

osed MSPN is relatively stable to illumination variations. This is

rue due to the fact that the proposed MSPN integrates spatial cor-

elations and higher orders to further refine incorrect predictions

ut not only considering low-level visual features. 

Effectiveness of MSPN in handling occlusions in scenes. Our

SPN models the spatial layout of scene images by a hierarchical
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Fig. 5. Scene image understanding result examples from occluded MSRC-21 dataset and SIFT FLOW dataset. Note that MSRC-21 multiscale potentials are occluded by red 

rectangular regions and SIFT FLOW by blue rectangular regions, occupying 25% and 45% of the total area. (a) Original images, (b) the groundtruth, (c) occluded unary 

potentials (only show the raw scale), (d) the results of N-R-MSPN, (e) the results of pairwise CRF, and (f) the results of robust P N CRF. 

Table 4 

The average pixel-level accuracy on two benchmarks before and after post- 

processing. 

Original MSRC-21 Noisy version Original SIFT FLOW Noisy version 

79 .4 79 .1 72 .9 72 .2 
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anner, and is able to capture object shape priors and long-range

nteractions of multiple objects. We verify the ability of MSPN for

odeling such global structure by adding occlusions that often ex-

st in scenes. On the MSRC-21 and SIFT FLOW test sets, we occlude

ultiscale unary potential by a randomly generated rectangular re-

ion on three levels, respectively occupying 5%, 25% and 45% of

he total scene area. The occlusion is done by setting the corre-

ponding unary potential to uniform ( φs 
c (x occluded 

i 
) = 1 /C). We test

ur MSPN model to evaluate its power on the unprecise unary po-

entials. The results and comparisons with two CRF methods are

hown in Table 5 and Fig. 5 . It can be found that with a small ratio

f occlusion (e.g., the sheep in Fig. 5 ), paiwise CRF and robust P N 

RF can obtain proper label assignments via using the hints from

he raw images, and sometimes achieve even a higher global accu-

acy since some inexact unary potentials can be occluded. How-

ver, when the occlusion (or uncertainty of unary potentials) is

ncreased to a relatively large area ratio, both the two CRF-based

ethods fail in recovering occluded objects. Our MSPN can well

andle these cases due to its powerful prior in modeling shape pri-

rs and the global spatial layouts of scene objects. For quantitive

omparisons, the three methods decrease on both the global ac-

uracy and the average per-category accuracy after increasing the

cclusion ratio; however, the proposed MSPN keeps a superior av-

rage accuracy, without decreasing to a border line (70% of MSRC-

1 and 20% of SIFT FLOW). 

Note that there is a large uncertainty of the total memory cost

ue to the edge prune process. The most memory-consuming stage

s the train process, where the space requirement is exponential,

nd online sequential training MSPN with hundreds of 120 x 160

mages needs about 16 GB memories to maintain the complete
tructure. After edge pruning, the required memory is less than

 GB since most edges are ineffective. Additionally, according to

ur experiments, the average computational cost of inference is

bout 0.6s for each image. 

. Discussion and conclusion 

This paper has proposed a multiscale sum-product network

MSPN) to capture the spatial-layout in a coarse-to-fine manner for

cene image understanding. We first construct a multiscale repre-

entation of unary potentials and object labels. We then use MSPN

o model the joint distribution over multiscale unary potentials

nd object labels. For testing, we infer object labels by using the

ost probable explanation (MPE) technique. The inference results

re then fed into a superpixel based refine method to further im-

rove the scene image understanding results. 

Our main contribution is that we extend sum-product net-

ork (SPN) to model multi-scale features, long-range spatial cor-

elations, and higher-order priors through a uniform probabilis-

ic graph. We inherit the advantages of SPN, and further propose

he improved MSPN for scene parsing scenario. As discussed, SPN

an represent most distributions in directed acyclic probabilistic

raphical models such as thin junction trees and hierarchical mix-

ures by a compact way. The compactness means that SPN can

odel a class of distributions by using exponentially fewer nodes

han other networks. For example, SPN can model N-dimensional

niform distribution with N nodes; however, other mixture mod-

ls have to use 2 N nodes. Our model extends the advantage of

PN by a hierarchical way to model long range spatial correla-

ions, and thus raises its generality to model more distributions

han SPN for a lot real situations, for example, the proposed MSPN

an handle some occlusion cases. Due to the property of compact-

ess and acyclic graphs, the proposed model can also be trained

nd inferred efficiently than undirected probabilistic graphs with

ycles, such as CRF and its variants which use complex approxi-

ations and iterations to achieve convergence. Therefore, the pro-

osed model is more representable and help reduce computational
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Table 5 

The evaluation of occlusions in understanding scene images on the MSRC-21 dataset and the SIFT FLOW dataset. We 

occlude the test benchmark scene images with randomly generated rectangular regions respectively occupying 5%, 25% 

and 45% of the total scene area, and compare the results with pairwise CRF and robust P N CRF. Both the average per- 

category accuracy and the global pixel accuracy of the results are provided for illustration. 

MSRC-21 SIFT FLOW 

N-R-MSPN Pairwise CRF P N CRF N-R-MSPN Pairwise CRF P N CRF 

5% (77 .8, 84.9) (75 .5, 84.5) (76 .9, 84.6) (20 .4, 72.9) (19 .8, 70.8) (19 .9, 72.2) 

25% (75 .0, 82.8) (70 .8, 81.2) (72 .6, 82.9) (20 .3, 72.6) (19 .7, 70.3) (19 .9, 71.7) 

45% (72 .3, 81.1) (56 .7, 74.2) (61 .2, 77.3) (20 .2, 71.7) (19 .2, 68.8) (20 .0, 71.1) 
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overloads. This has been validated in our scene parsing explo-

rations in this work. We conduct experiments on two challeng-

ing datasets and demonstrate the effectiveness of our method for

scene image understanding, in particular for handling occlusions

that often occur in natural scenes. 

The main weakness of the paper is that the lower representabil-

ity bounds the further improvement of the performance. We be-

lieve the performance can be improved by a large margin through

deep features due to the fact that we perform the best in the com-

munity that uses shallow features. In our future work, we will ex-

plore more representative deep features and unary potentials to

further improve the accuracy of scene image understanding. Ad-

ditionally, exploring scene understanding on image-level by co-

understanding large-scale images will be another interesting task

in our further research. 
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