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Introduction

* Action recognition from short clips has been Widely studied

recently (e.g. HMDB51, UCF101)

® Action recognition and detection from temporally

untrimmed videos received less attention.

e THUMOS 14 challenge focuses on this more difficult

problem.

State of the art results

UCF 101 THUMOS 14 THUMOS 14
Recognition Recognition Detection

87.9% 71.0% 33.6%




Introduction

® There are two key problemsin this challenge:

e How to conduct temporal segmentation of continuous video
sequence,

® How to represent the video clips for action recognition.

® In our current method, we only try a simple segmentation

method.

e We mainly focus on how to extract effective visual

repre sentation.




Introduction

® What kinds of information are important for action

understanding from video.
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Related Works

° Dynamic motion cues:

* Low-levelfeatures: STIPs [Laptev 05], Improved Trajectories
[Wang1 3] etc.

® Mid-level representation: Motionlet [Wang 13], Discriminative

patches [Jain etc 13], Motion atoms and phrases[Wang1 3] etc.
* High-level representation: Action Bank [Sadanand12] etc.

® FromTHUMOS 13, it is known that Fisher vector of

improved dense trajectories is very effective.

* From our experience, the mid-level representation is

complementary to FV of IDT.




Related Works

® Pose: Poselet [Bourdev09], Mixture of parts [Yang13] etc.
® Object: Deformable part model [Felzenszwalb10] etc.
® Scene: Gist [OlivaO1], Discriminative Patches [Singh12] etc.

* Recently, deep CNN obtains much better results with theses
tasks.
» Deep CNN will need a large number of training samples with

supervised labels.
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Overview of Our Method

—— Clip
Temporally Temporal Sliding e cing
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* We propose a simple pipeline for action recognition and

detection from temporally untrimmed videos

* Itis composed of three steps: temporal segmentation, clip

representation and recognition, post-processing




Temporal Segmentation

® We use the simple temporal sliding window method.
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Window duration

Sliding step
® In currentimplementation, we just a single temporal scale

for sliding window (duration =150 frames, step = 100
frames)




Clip Representation
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Improved Dense Trajectories

Tracking in each spatial scale separately Trajectory description

Dense sampling . n,
in each spatial scale i y '
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* Improved dense trajectories extract: HOG, HOF, MBHx, MBHy

e Improved dense trajectories firstly estimate camera motion and

compensate it.

[1] Heng Wang and Cordelia Schmid, Action Recognition with Improved Trajectories, in ICCV 2013,
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Bag of Visual Words

Codebook Generation

Feature
Pre-processing

Video Feature
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® There many choices in each step of BoVW and implementation details
are important.

® Super vector encoding outperforms others.

[1] X. Peng, L. Wang, X. Wang,Y. Qiao, Bag of Visual Words and Fusion Methods for Action Recognition:
Comprehensive Study and Good Practice. CoRR abs/1405.4506, 2014




Fisher Vector

* Given a set of descriptors: 4 =[x, x,, - x,] € #7 [ we learn a
generative GMM: ok 0) = Z/V(X; u,S,)
* Given the descriptors from video clip, we derive the Fisher

vector:
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* In our current implementation, we choose power €2-

normalization (& = 0.5) to obtain final representation S :
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CNN Activation
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° We firstly resize frame as 256*256 and then crop a region as

2277%227

* We use the Cafte implementation of the CNN described by
[Krizhevsky et al.]

® We extract the activation of Full7 as CNN features (4096
dimensions) and conduct average pooling over difterent crops.

[1] Jia,Y.: Caffe: An open source convolutional architecture for fast feature embedding.
(2013)

[2] Krizhevsky, A, Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NIPS. pp. 11061114 (2012)




CNN Fine-tuning

* We fine tune the parameters of CNN using the UCF101
dataset through 50,000 iterations.

e We extract 10 frames from each video and use the video

label as frame label to fine tune the ImageNet training result

® The batch size is set as 256, drop out ratio as 0.5, iteration:

50,000.

Results of Split 1 on UCF 101

Without fine tuning With fine tuning

65.3% 70.5%




Feature Fusion

® For appearance feature, we extract CNN activations on 15
frames and perform average pooling to get the representation

of video clip.

* For motion feature, we use FV for each descriptor of IDT

features independently.

e Both appearance and motion features are firstly normalized

and then concatenated as a hybrid representation.

® The fusion weight: appearance (0.4), motion (1.0).
ght: app




Classifier

e We choose linear SVM classifier for action recognition and

detection using Training dataset and Background dataset.

® For multi-class classification, we use the one vs. all training

scheme.

* To void false detections, we randomly select 4,000 clips from
the background dataset as negative examples when training
SVM for each action class.




Post Processing

® To obtain the action recognition result for the whole video
sequence, we conduct max pooling over the recognition

result of video clip.

* To avoid false positive recognition and detection, we simply
use three thresholds:

* Clip level threshold t;: for each clip, there are at most t; action

Instances.

* Sequence level threshold t,: for each sequence, there are at

most t, action instances.

® SVM score threshold t;: elimination of detection instance with

confidence score lower than t;.
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Experiment Results 1

Action recognition result of Split1 on UCF 101

Motion Feature Appearance Feature Fused Feature

85.3% 70.5% 89.1%

Action recognition result on validation dataset of THUMOS 14

Motion Feature Appearance Feature Fused Feature

57.1% 48.2% 65.3%




Experiment Results 2

Action recognition result on test dataset of THUMOS 14

Result 0.617 0.6177 0.6196 0.6174 0.6201

Action detection result on test dataset of THUMOS 14

Overlap=0.1 0.1080 0.1373 0.1701 0.1818
Overlap=0.2 0.1042 0.1319 0.1591 0.1700
Overlap=0.3 0.0891 0.1137 0.1306 0.1405
Overlap=0.4 0.0765 0.0975 0.1090 0.1174

Overlap=0.5 0.0563 0.0695 0.0775 0.0834




V. Conclusions




Conclusions

® We prove that motion features (IDT) and appearance features

(CNN) are complimentary to each other.
* For FV of IDT, implementation detail such as descriptor pre-

processing, normalization operation has a great influence on

final performance.

® For CNN feature, fine-tuning on UCF101 dataset helps to

improve recognition performance.

® In the future, we may consider designing more effective
segmentation algorithm or performing both tasks

simultane ously.




Another Work on Action Detection

e We design a method unifying action detection and pose
estlmatlon in ECCV 2014—
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* Welcome to our ECCV poster presentation:
® Video Action Detection with Relational Dynamic-Poselets (Session 3B).
® Action Recognition with Stacked Fisher Vectors (Session 3B).

® Boosting VLAD with Supervised Dictionary Learning and High—Order
Statistics (Session 2B).




