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Towards efficient end-to-end architectures for
action recognition and detection in videos
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Action recognition in videos

§ 1. Action recognition “in the lab”: KTH, Weizmann etc.
§ 2. Action recognition “in TV, Movies”: UCF Sports, Holloywood etc.
§ 3. Action recognition “in Web Videos”: HMDB, UCF101, THUMOS,

ActivityNet etc.
Haroon Idrees et al. The THUMOS Challenge on Action Recognition for Videos "in the Wild”, in Computer Vision and 
Image Understanding (CVIU), 2017.
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§ Action Recognition: classify the short clip or untrimmed
video into pre-defined class.

§ Action Temporal Localization: detect starting and 
ending times of action instances in untrimmed video.

§ Action Spatial Detection: detect the bounding boxes of
actors in trimmed videos.

§ Action Spatial-Temporal Detection: combine temporal
and spatial localization in untrimmed videos.
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Action Understanding Tasks
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Action recognition -- deep networks (2014)

Andrej Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, in CVPR, 2014.
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Action recognition – two stream CNN (2014)

Karen Simonyan and Andrew Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos,
in NIPS, 2014.
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Action recognition – 3D CNN (2015)

Du Tran et al. Learning Spatiotemporal Features with 3D Convolutional Networks, in ICCV, 2015.
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§ Opportunities
§ Videos provide huge and rich data for visual learning
§ Action is important in motion perception and has many applications

§ Challenges
§ Temporal models and representations
§ High computational and memory cost
§ Noisy and weakly labels
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Opportunities and Challenges
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Action Recognition
(AR)

• Temporal
Segment Net
(TSN)

Action Detection
(AD)

• Structured
Segment Net
(SSN)

Weakly Supervised
AR & AD

• UntrimmedNet
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Overview

§ [1] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, Temporal Segment 
Networks: Towards Good Practices for Deep Action Recognition, in ECCV, 2016.

§ [2] L. Wang, Y. Xiong, D. Lin, and L. Van Gool, UntrimmedNets for Weakly Supervised Action 
Recognition and Detection, in CVPR 2017.

§ [3] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, D. Lin, and X. Tang, Temporal Action Detection with 
Structured Segment Networks, in ICCV 2017.
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§ Towards end-to-end and video-level architecture.
§ Modeling issue: mainstream CNN frameworks focus on

appearance and short-term motion.
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Motivation of TSN
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Modeling Long-Range Structure

Stacking multiple frames: dense and local

[1] Joe Yue-Hei Ng et al. Beyond Short Snippets: Deep Networks for video classification, in CVPR 2015.
[2] C. Feichtenhofer et al. Convolutional Two-Stream Network Fusion for Video Action Recognition, in CVPR 2016.
[3] Gul Varol et al., Long-term Temporal Convolutions for Action Recognition in PAMI 2017.
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§ There are high data redundancy in video.
§ High-level semantics vary slowly (slowness).
§ Our segment sampling share two properties:

§ Sparse: processing efficiency
§ Global: duration invariant and modeling the entire video content.
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Segment Based Sampling
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Modeling Long-Range Structure

Segment based sampling: sparse and global
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Overview of TSN

TSN is a video-level framework based on simple strategies of segment sampling
and consensus aggregation.
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§ Aggregation function aims to summarize the predictions of
different snippet to yield the video-level prediction.

§ Simple aggregation functions:
§ Mean pooling, max pooling, weighted average

§ Advanced aggregation functions:
§ Top-k pooling, attention weighting
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Aggregation Function
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Stacking RGB difference
Stacking warped optical field
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Input modalities
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Experiment result -- input modality

S. Ioffe et al., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in
ICML 2015.
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Exploration on TSN
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Evaluation on TSN
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Comparison on Trimmed Datasets
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[1] L. Soomro et al., UCF101: A datasetof 101 human action classes from videos in the wild, in arXiv 1212.0402,2012.
[2] H. Kuehne et al., HMDB: A large video database for human motion recognition, in ICCV, 2011.
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Comparison on Untrimmed Datasets
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[1] H. Idrees et al., The THUMOS Challenge on Action Recognition for Videos “in the Wild”, in CVIU, 2017.
[2] F. C. Heilbron et al., ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding, in CVPR, 2015.
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CVPR ActivityNet Challenge -- 2016
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CVPR ActivityNet Challenge -- 2016
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CVPR ActivityNet Challenge -- 2016
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Kinetics dataset
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Results on Kinetics Dataset

RGB, Pretrain on ImageNet, TSN: top-1 70.28%, 89.13%
RGB, Train from scratch, TSN: top-1 69.55%, 88.68%
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Action Recognition
(AR)

• Temporal
Segment Net
(TSN)

Action Detection
(AD)

• Structured
Segment Net
(SSN)

Weakly Supervised
AR & AD

• UntrimmedNet
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Overview

§ [1] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, Temporal Segment 
Networks: Towards Good Practices for Deep Action Recognition, in ECCV, 2016.

§ [2] L. Wang, Y. Xiong, D. Lin, and L. Van Gool, UntrimmedNets for Weakly Supervised Action 
Recognition and Detection, in CVPR 2017.

§ [3] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, D. Lin, and X. Tang, Temporal Action Detection with 
Structured Segment Networks, in ICCV 2017.
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Motivation of Structured Segment Network

1. Action detection in untrimmed
video is an important problem.

2. Snippet-level classifier is difficult to
accurately localize the temporal
extent of action instance.

Context and Structure Modeling!



|| 17/7/27Limin Wang (CVL ETHZ) 28

Temporal Region Proposal

Bottom up proposal generation based on actionness map
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Structured Segment Network (SSN)
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§ To model the class classes and completeness of
instances, we design a two classifier loss

P(c,b|p) = P(c|p)P(b|c,p)
§ Action class classifier measure the likelihood of action

class distribution: P(c|p)
§ Completeness classifier measure the likelihood of

instance completeness: P(b|c,p)
§ A joint loss to optimize these two classifiers:
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Two Classifier Design
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Experiment result -- Action Proposal

[1] V. Escorcia, F. Caba Heilbron, J. C. Niebles, and B. Ghanem. Daps: Deep action proposals for action 
understanding. In, ECCV, pages 768–784, 2016. 
[2] Fabian Caba Heilbron et al.. Fast temporal activity proposals for efficient detection of human actions 
in untrimmed videos. In CVPR, 2016.
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Experiment result -- Component Analysis
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Experiment result -- Comparison

[1] H. Idrees et al., The THUMOS Challenge on Action Recognition for Videos “in the Wild”, in CVIU, 2017.
[2] F. C. Heilbron et al., ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding, in CVPR, 2015.
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Detection example (1)

Green: correct detection
Red: bad localization
Yellow: multiple detections
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Detection example (2)

Green: correct detection
Red: bad localization
Yellow: multiple detections
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Action Detection
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Overview of temporal modeling

§ [1] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, Temporal Segment 
Networks: Towards Good Practices for Deep Action Recognition, in ECCV, 2016.

§ [2] L. Wang, Y. Xiong, D. Lin, and L. Van Gool, UntrimmedNets for Weakly Supervised Action 
Recognition and Detection, in CVPR 2017.

§ [3] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, D. Lin, and X. Tang, Temporal Action Detection with 
Structured Segment Networks, in ICCV 2017.
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Motivation of UntrimmedNet

1. Labeling untrimmed video
is expensive and time
consuming

2. Temporal annotation is
subjective and not
consistent across persons
and datasets
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Overview of UntrimmedNet
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§ Uniform Sampling
§ Uniform sampling of fixed duration

§ Shot based Sampling
§ First shot detection based HOG difference
§ For each shot, perform uniform sampling.
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Clip Proposal
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§ Following TSN framework:
§ Sampling a few snippets from each clip.
§ Aggregating snippet-level predictions with average pooling

§ In practice, we use two stream input: RGB and Optical
Flow
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Clip Classification
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§ Selection aims to select discriminative clips or rank them
with attention weights.

§ Two selection methods:
§ Hard selection: top-k pooling over clip-level prediction
§ Soft selection: learning attention weights for different clips

17/7/27Limin Wang (CVL ETHZ) 41

Clip Selection
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Top-k Pooling

Washing Dishes
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§ UntrimmedNet is an end-to-end learning architecture,
combing three modules: feature extraction, classification
module, selection module.

§ Video-level prediction: a bilinear model over classification
score and selection weights.

§ The whole pipeline could be optimized with standard back
propagation algorithm.
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UntrimmedNet
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§ Action Recognition:
§ In practice, we sample a single frame (or 5 frame stacking of 

optical flow) every 30 frames.
§ The recognition from sampled frames are aggregated with top-k 

pooling (k set to 20) to yield the final video-level prediction. 
§ Action Detection:

§ we sample frames every 15 frame and for each frame, we get both 
prediction scores and attention weights. 

§ we remove background by thresholding (set to 0.0001) on the 
attention weights . 

§ we produce the final detection results by thresholding (set to 0.5) 
on the classification scores. 

17/7/27Limin Wang (CVL ETHZ) 45

Weakly supervised AR and AD



|| 17/7/27Limin Wang (CVL ETHZ) 46

Exploration Study
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Exploration Study
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Exploration Study
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Experiment Results -- Action recognition

[1] H. Idrees et al., The THUMOS Challenge on Action Recognition for Videos “in the Wild”, in CVIU, 2017.
[2] F. C. Heilbron et al., ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding, in CVPR, 2015.
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Experiment Results -- Action recognition

[1] H. Idrees et al., The THUMOS Challenge on Action Recognition for Videos “in the Wild”, in CVIU, 2017.
[2] F. C. Heilbron et al., ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding, in CVPR, 2015.
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Experiment Results -- Action detection

[1] H. Idrees et al., The THUMOS Challenge on Action Recognition for Videos “in the Wild”, in CVIU, 2017.
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Examples of Attention
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§ Temporal modeling is important for action understanding.
§ Segment based sampling shares two properties: global

and sparse.
§ TSN is a general and flexible framework for action

modeling.
§ SSN extends TSN for action detection with context and

structure modeling.
§ UntrimmedNet extends TSN for weakly supervised

setting with attention modeling.
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Summary
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§ [1] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, Temporal Segment 
Networks: Towards Good Practices for Deep Action Recognition, in ECCV, 2016.

§ [2] L. Wang, Y. Xiong, D. Lin, and L. Van Gool, UntrimmedNets for Weakly Supervised Action 
Recognition and Detection, in CVPR 2017.

§ [3] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, D. Lin, and X. Tang, Temporal Action Detection with 
Structured Segment Networks, in ICCV 2017.
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Code and References

§ Temporal segment network:
https://github.com/yjxiong/temporal-segment-network

§ Structured segment network:
https://github.com/yjxiong/action-detection
§ UntrimmedNet:
https://github.com/wanglimin/UntrimmedNet

§ Video Caffe:
https://github.com/yjxiong/caffe
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Collaborators


