
A Joint Evaluation of Dictionary Learning and
Feature Encoding for Action Recognition

Xiaojiang Peng1,3, Limin Wang2,3, Yu Qiao3, Qiang Peng1
1School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China

2Department of Information Engineering, The Chinese University of Hong Kong
3Shenzhen key lab of Comp. Vis. & Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China

{xiaojiangp, 07wanglimin}@gmail.com, yu.qiao@siat.ac.cn, qpeng@swjtu.edu.cn

Abstract—Many mid-level representations have been devel-
oped to replace traditional bag-of-words model (VQ+k-means)
such as sparse coding, OMP-k with k-SVD, and fisher vector
with GMM in image domain. These approaches can be split
into a dictionary learning phase and a feature encoding phase
which are often closely related. In this paper, we jointly evaluate
the effect of these two phases for video-based action recognition.
Specially, we compare several dictionary learning methods and
feature encoding schemes through extensive experiments on the
KTH and HMDB51 datasets. Experimental results indicate that
fisher vector performs consistently better than the other encoding
methods, and sparse coding is robust to different dictionaries even
random weights. In addition, we observe that the advantages of
sophisticated mid-level representations do not come from their
specific dictionaries but the encoding mechanisms, and we can
just use randomly selected exemplars as dictionaries for most of
encoding methods. Finally, we achieve the state-of-the-art results
on the HMDB51 and UCF101 by combining our configurations
with improved dense trajectory features.

I. INTRODUCTION

Human action recognition has been an active research area
in recent years due to its wide applications, such as smart video
surveillance, video indexing and human-computer interface
[1]–[9]. The difficulty of action recognition comes from the
large intra-class variation, clutter and occlusion in background
or foreground and other fundamental difficulties. In recent
years, much work has applied bag-of-words (BoW) model
[10] in human action recognition [1]–[4]. This model mainly
contains five steps: feature extraction, dictionary learning,
feature encoding, pooling, and normalization. As for classical
BoW, we usually extract local features from videos, learn a
visual dictionary in training set by clustering algorithm like
k-means, encode local features to their nearest words (i.e.,
vector quantization (VQ)), and finally create a histogram for
each video by aggregating the frequency of visual words.

Many recent efforts have been devoted to the dictionary
learning and feature encoding phases for visual recognition
due to their importance. Aharon et al. [11] presented a singular
value decomposition (k-SVD) based approach to learn effec-
tive over-completed dictionary which is a generalized version
of k-means. Sometimes it is also known as OMP-k since
the orthogonal matching pursuit (OMP) is utilized to assign
features, which is an approximate solution for ℓ0 norm sparse
representation. Lee et al. [12] developed a ℓ1 norm based
sparse coding (SC) algorithm, where feature-sign search algo-
rithm was applied for encoding and Lagrange dual method for
dictionary learning. Yang et al. [13] employed this SC scheme

for image classification and achieved excellent performance.
Wang et al. [14] proposed a locality-constrained linear coding
(LLC) where a locality constraint is added to the loss function
of SC. Liu et al. [15] presented local soft-assignment (SA-
k) for image classification. Perronnin et al. [16] developed
an improved fisher vector (FV) with dictionary of Gaussian
mixture model (GMM) for object recognition. Wang et al.
[17] utilized FV for action recognition. It is worth noting that
each encoding method is equipped with its specific dictionary
learning algorithm. For example, dictionary learning method of
k-SVD for encoding method OMP-k, SC for SC, and GMM
for FV. A natural question is “what is the correlation between
dictionary learning method and encoding method, and which
is more important for performance improvement?”.

In this paper, we investigate the mutual influence of dic-
tionary learning methods and feature encoding approaches for
action recognition in video domain. As for video-based action
recognition, there exist several evaluations for the local spatial-
temporal feature extraction [4], feature encoding, pooling and
normalizing methods [17]. To the best of our knowledge, there
is still no reported work on the joint evaluation of dictionary
learning and feature encoding methods in the context of human
action recognition. Specially, the selected dictionary learning
approaches in this paper are namely random weights (RW)
which selects random numbers yielded by uniform distribution
as dictionary, random exemplars (RE) which randomly collects
features from training set as dictionary, k-means, GMM, k-
SVD (or OMP-k) [11] and sparse coding [12]. To investigate
the performance with different encoding schemes, we employ
several feature encoding methods, namely VQ, soft-assignment
[15], OMP, SC, LLC [14], and fisher vector [16].

The main contributions of this paper come from our
observations: (1) it’s not necessary to keep specific dictionary
learning methods for certain encoding methods; (2) encoding
methods play the leading role for performance improvement;
(3) fisher vector performs consistently better than the other
encoding methods for human action recognition; (4) sparse
coding is robust to different dictionaries even random weights.
Finally, we achieve the state-of-the-art performance on two
large datasets–HMDB51 [5] and UCF101 [6].

II. METHOD REVIEW

The video representation of our evaluation model is shown
in Figure 1. First, local spatial-temporal features are extracted
(e.g., STIP [3], Cuboids [2], and improved dense trajectories
[7]), and then a dictionary is learned from the features in



Fig. 1. Video representation of our evaluation framework.

training set. Next, features are encoded using the learned
dictionary, and then all the coding coefficients in a single
video are pooled and normalized as the final video representa-
tion. Here, we focus on the dictionary learning and feature
encoding steps. Let X = [x1,x2, ...,xN ] ∈ Rd×N be a
set of local features, D ∈ Rd×K be the learned dictionary
and S = [s1, s2, ..., sN ] ∈ RK×N be the coefficient vectors.
Following are the details of different dictionary learning and
feature encoding methods.

A. Dictionary Learning Methods

Dictionary learning aims to obtain a certain dictionary
D = [d1,d2, ...,dK ] ∈ Rd×K , which can best depict the
input feature space. Here, we give the formulations of those
methods we used.

Random Weights (RW). Following [18], we obtain a
dictionary by filling the columns of D with vectors sampled
from a unit normal distribution (subsequently normalized to
unit length).

Randomly selected Exemplars (RE). This approach just
fills the columns of D with normalized vectors randomly
sampled from training data set X.

k-means. It is perhaps the most popular unsupervised way
to learn a dictionary due to its simplicity and effectiveness. It
aims to minimize the following objective function:

C =

K∑
i=1

ni∑
j=1

||x(i)
j − di||22, (1)

where x
(i)
j denotes the data point included in the cluster i

whose center is di. In practice, we first select K data points
as initial centroids, then assign each data point to the closest
centroid and recalculate the positions of the K centroids, repeat
these until the centroids no longer move.

GMM. Gaussian Mixture Model is a probabilistic model
to depict the distribution over the given feature space:

p(x; θ) =

K∑
k=1

πkN (x;µk,Σk), (2)

where K is the number of mixture components and
θ = {π1, µ1,Σ1, · · · , πK , µK ,ΣK} is the model parameters.
N (x;µk,Σk) is a d-dimensional Gaussian distribution. The
optimal parameters of GMM can be learned through maximum
likelihood ln p(X; θ) =

∑
n ln p(xn; θ) by employing the

iterative EM algorithm [19].

k-SVD (OMP-k). As a generalized version of k-means,
k-SVD [11] has an alternative objective function:

min
D,si

N∑
i=1

||xi −Dsi||22, (3)

s.t. ∀i, ||si||ℓ0 ≤ k and ∀j, ||dj ||22 = 1,

where k is the largest number of non-zero components in
each code si. Usually, the codes are computed using OMP
algorithm, thus we refer it to as OMP-k here in order to keep
pace with its corresponding encoding method. For each single
input xi, OMP greedily selects the most relevant di at each
iteration and makes an element of si to be non-zero. After the
k-th selection, si is updated to minimize ||xi − Dsi||22 with
allowing only the selected elements to be non-zero. And after
computing all the codes, we update the elements of D one by
one via applying SVD to the residual [11].

Sparse Coding (SC). Here, sparse coding dictionary spe-
cially denotes the ℓ1-norm constrained one from Lee et al.
[12]. The standard objective function of ℓ1-norm constrained
sparse coding based dictionary learning is as follows,

min
D,si

N∑
i=1

||xi −Dsi||22 + λ
∑
i

||si||ℓ1 , s.t.∀j, ||dj ||22 = 1, (4)

where λ is a sparse factor. Lee et al. [12] proposed a feature-
sign search algorithm to solve the ℓ1-regularized least squares
(i.e., encoding) problem and a Lagrange dual technique to
work out the ℓ2-constrained least squares (i.e., dictionary
updating). The dictionary is generated iteratively. The main
idea of feature-sign search algorithm is to guess the signs of
coding coefficients from ”helpful” features and then solve an
unconstrained quadratic optimization problem.

B. Feature Encoding Methods

The purpose of feature encoding is to compute a vector
s ∈ RK for input x with D. Here, we give the formulations
of the encoding methods we used.

Vector quantization (VQ). VQ is the standard encoding
method of BoW, which solves the following constrained ob-
jective function:

s(i) = 1, if i = argmin
j

||x− dj ||22, s.t.||s||ℓ0 = 1 (5)

where constraint ||s||ℓ0 = 1 means that there will be only one
non-zero element in s, which is found by searching the nearest
word in the dictionary.

Soft-assignment (SA). SA means that more than one
word will be used. In fact, there are several techniques to
realize soft-assignment (e.g., [15], [20], [21]). We select the
k-nearest neighborhood or ”localized” version of Liu’s [15]



(here we name it as SA-k) in our experiments due to its good
performance. The k elements of vector s are given by,

s(i) =

{
exp(−β||x−di||22)∑k
i=1 exp(−β||x−di||22)

; if di ∈ Nk(x),

0 otherwise.
(6)

Where Nk(x) denotes the k-nearest neighborhood of x. β is
a smoothing factor to control the softness of the assignment.

Sparse coding (SC). Given a dictionary D, SC tries to get
the code s for input x by solving the following function:

s = argmin
s

||x−Ds||2 + λ||s||ℓ1 , (7)

This problem is well known as the lasso problem [22]. Several
algorithms can be used to solve this problem such as least
angle regression [23] and feature-sign method [12]. We employ
feature-sign scheme here.

Orthogonal Matching Pursuit (OMP-k). As mentioned
above, given x and D, we greedily select the most relevant
di at each iteration and make an element of s to be non-zero.
After the k-th selection, s is updated to minimize ||x−Ds||22
by allowing only the selected elements to be non-zero.

Locality-constrained linear coding (LLC). Wang [14]
suggested that locality is more essential than sparsity, since
locality must lead to sparsity but not necessary vice versa. The
coefficient vector of LLC is obtained by solving the following
optimization:

s = argmin
s

||x−Ds||2 + λ||e⊙ s||2, s.t. 1⊤s = 1, (8)

where e = exp(dist(x,D)/σ) and dist(x,D) denotes the Eu-
clidean distance between x and D. σ is a parameter controlling
the weight vector e. In our experiments, we apply the k-
NN version of LLC (here we call it LLC-k), which is an
approximation with low computational cost in practice.

Fisher Vector (FV). Fisher vector is derived from fisher
kernel which is introduced for large-scale image categorization
[16]. The fisher kernel is a generic framework which combines
the benefits of generative and discriminative approaches. It
usually leverages GMM as its dictionary. As it is known,
the gradient of the log-likelihood with respect to a parameter
can describe how that parameter contributes to the process
of generating a particular example. Then the video can be
described by the gradient vector of log likelihood with respect
to the model parameters [24]:

GX
θ =

1

N
∇θ log p(X; θ). (9)

Note that the dimensionality of this vector depends only on the
number of parameters in θ. Perronnin et al. [16] developed an
improved fisher vector as follows,

GX
µ,k =

1

N
√
πk

N∑
n=1

γn(k)

(
xn − µk

σk

)
, (10)

GX
σ,k =

1

N
√
2πk

N∑
n=1

γn(k)

[
(xn − µk)

2

σ2
k

− 1

]
, (11)

where γn(k) is the weight of local feature xn to i-th Gaussian:

γn(k) =
πkN (xn;µk,Σk)∑K
i=1 πiN (xn;µi,Σi)

. (12)

Fig. 2. Sample frames from KTH, HMDB51, and UCF101 datasets.

The final fisher vector is the concatenation of GX
µ,k and GX

σ,k
which is a 2Kd dimensional super vector.

III. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Datasets

We conduct experiments on three published action
datasets–KTH [1], HMDB51 [5], and UCF101 [6]. These
datasets are collected from controlled experimental setting and
web videos. Totally, we use more than 22,000 video clips.
Some sample frames are illustrated in Figure 2.

The KTH dataset [1] is one of the most popular datasets in
action recognition, which consists of 2,391 video clips acted
by 25 subjects. It contains 6 action classes: walking, jogging,
running, boxing, hand-waving, and hand-clapping. Actions are
recorded at 4 environment settings: outdoors, outdoors with
camera motion, outdoors with clothing change, and indoors.
We follow the experimental settings in [1] where clips are
divided into a training set (16 subjects) and a testing set
(9 subjects). The HMDB51 dataset [5] consists 51 action
categories with 6,766 manually annotated clips which are
extracted from a variety of sources ranging from digitized
movies to YouTube. We follow the experimental settings in [5]
where three train/test splits are available, and report the mean
average accuracy over all classes. The UCF101 dataset [6]
is perhaps the largest action recognition dataset currently and
gives the largest diversity in terms of actions, with the presence
of large variations in camera motion, object appearance and
pose, object scale, viewpoint, cluttered background, illumina-
tion conditions, etc. It contains 13,320 videos collected from
YouTube and includes total number of 101 action classes. The
videos are grouped into 25 groups. We perform evaluation on
the newest three train/test splits 1 and report the mean average
accuracy over all classes.

B. Joint exploration of dictionary learning algorithms and
encoding methods

We firstly conduct expansive experiments on the KTH and
HMDB51 datasets with different dictionary learning algorithm-
s and encoding methods.

1http://crcv.ucf.edu/ICCV13-Action-Workshop/
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Fig. 3. Results of different dictionaries and encoding schemes on the KTH and HMDB51 datasets. Note there are only k-means and GMM for fisher vector
because other dictionary learning methods can not provide the necessary parameters for FV.

Implementation details. Spatial-temporal interest points
(STIPs) are extracted for both datasets using the version 1.1
of source code from the author’s website [3]. We separate HOG
and HOF descriptors, and construct two BoW models. Specif-
ically, we randomly sample 100k features to learn dictionaries
with size of 4k. When the FV is used, the dictionary size
(GMM mixture number) is fixed to 256. In order to evaluate
the effect of the number of neighbours for those locality based
encoding methods, we choose k = [2, 5, 10] for OMP-k, SA-
k and LLC-k, and set the mentioned parameters [β, λ, σ] to
be [1, 0.15, 1]. As for dictionary learning phase, we use the
VL Feat toolbox for k-means, employ the source code from
Yang’s website [13] for sparse coding, and set 50 iterations
for both OMP and SC. After encoding all the features, we
employ sum pooling for all the methods and normalized by
“SSR+L2” scheme which demonstrated better results than
other post-processing strategies by our previous work [17]. We
compute RBF kernels with χ2 distance for both HOG and HOF
channels [3] for all the encoding methods except for FV, and
then get the average kernel as inputs for kernel SVM classifier.
When evaluating GMM and k-means for FV (the parameters
for FV are directly computed from all the clusters when using
k-means), we perform PCA and whitening for both HOG and
HOF with dimensions of 40 and 60, and the final vectors are
directly concatenated and sequently input a linear SVM. As for
multi-class classification, we use the one-against-rest approach

and select the class with the highest score.

Key observations and analysis. We explore the possible
combinations of different dictionary learning and feature en-
coding methods, and the results are shown in Figure 3. Several
observations can be obtained from Figure 3. Firstly, there is no
evidence that a certain encoding method should utilize its spe-
cific dictionary learning algorithm. For instance, the result of
“k-means+FV” is very similar to that of “GMM+FV” on KTH
and even better than on HMDB51. Secondly, all the dictionary
learning methods except RW can be adapted to different feature
encoding algorithms and obtain the similar performance on
both the datasets. We analyze that RW sampling uniformly
in the feature space, therefore fail to capture the heavy tail
property of local feature distribution. The other dictionary
learning methods consider the structure of feature space either
implicitly or explicitly. Thirdly, comparing different encoding
methods, we conclude that FV obtains the best performance
and VQ obtain the worst performance. This result can be
ascribed to the fact that FV reserves the richest information, i.e.
the first-order and second-order statistics, during the encoding
process, where VQ just store the occurrence of words, i.e.
zero-order statistics. For other encoding methods, SC performs
slightly better and the rest obtain similar results. These meth-
ods all leverage the “sparsity” into their framework essentially
and capture similar aspect of feature space. Finally, we notice
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Fig. 4. Performance of different encoding methods using k-means, RE, and GMM with changing dictionary sizes on the KTH dataset.

that sparse coding is robust to different dictionaries, and OMP,
LLC, SA is not sensitive to the number of nearest neighbours.

Dataset complexity. All of the methods obtain similar
results (except for the methods with RW) on KTH but there
are relatively large differences on HMDB51. The classical “k-
means+VQ” and “GMM+FV” achieve 93.29% and 94.44%
on KTH, respectively. But they obtain 29.6% and 37.69% on
HMDB51, respectively. The distinctions between them come
from the complexity of action videos and the number of
categories. The KTH dataset owns only 6 classes and the
videos are recorded in a constrained environment. The diversity
of videos is much lower than that of the ones from HMDB51.
The dictionary of size 4,000 is able to cover the complexity of
feature space of the KTH, and the the histograms of different
classes can be separated effectively, no matter which encoding
method is used. Thus, all the approaches perform similarly on
the KTH. However, for HMDB51, the number of classes is
much larger and the STIPs are not only extracted in motion
foreground but also in the background due to serious camera
motion. Therefore, it is not enough to cover the feature space
for each class with less than 80 words because of large
variations, which results in large overlaps among the word
distributions of different classes on the HMDB51 dataset.

Dictionary size. We further discuss the influence of dic-
tionary size on the KTH dataset. We take RE, k-means,
and GMM for this purpose. The results of several encoding
methods with different dictionary sizes are shown in Figure 4.
Generally, the results are improved with increasing dictionary
size. The appropriate dictionary size is 1,000 for VQ and OMP-
5, and 4,000 for SC, SA-5, and LLC-5 from Figure 4. The
improvement by increasing the dictionary size with k-means
is more reliable than RE but the global trend is similar, and
the same case is for GMM versus k-means.

Cost. Table I shows the detailed costs of dictionary learning
schemes. The time consumptions are ranked as: RE≈RW≪ k-
means≪OMP-2<OMP-5<OMP-10<SC. RE and RW are the
fastest ones obviously, and the others have to spend expensive
time cost for optimization. Dictionary using SC almost takes

TABLE I. THE COST OF DIFFERENT DICTIONARY LEARNING METHODS
WITH THE SIZE OF 4K FROM 100K FEATURES ON KTH DATASET.

Methods RW RE K-means OMP-2 OMP-5 OMP-10 SC
HOG 0.15s 0.15s 7.48min 1.45h 2.83h 5.50h 23.14h
HOF 0.18s 0.18s 7.50min 1.75h 3.05h 5.94h 31.47h
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Fig. 5. The average cost of different feature encoding methods for a video
on KTH, where the dictionary is fixed by k-means with the size of 4k.

one day which mainly due to the repeated encoding steps for
those 100k features. We also compare the costs of different
encoding methods by randomly selected 50 videos from the
KTH dataset. The dictionaries are all generated by k-means
with the size fixed to 4000 except for FV. The dictionary size
for FV is set to 256. The average costs of encoding strategies
for single video are illustrated in Figure 5. The runtime is
obtained on an Acer laptop with a 2.5 GHz Intel Core i5 CPU
and 4 GB RAM. And we set 50 iterations for OMP and SC.

C. Further exploration with improved dense trajectory feature

In this section, we further study these mid-level repre-
sentations with improved dense trajectories (IDTs) on the
HMDB51 and UCF101 dataset due to their good performance
[7]. IDTs extract four kinds of descriptors, namely HOG, HOF,
MBHx, and MBHy, and all the descriptors are preprocessed
by PCA and whitening. Due to the observation that dictionary



TABLE II. THE RESULTS OF DIFFERENT ENCODING METHODS WITH
IDT FEATURE ON HMDB51 AND UCF101 DATASETS.

HMDB51 UCF101
Methods VQ SA-5 LLC-5 FV VQ SA-5 LLC-5 FV

HOG 34.81 35.45 34.68 42.72 65.4 65.81 65.46 74.64
HOF 42.07 42.66 42.18 50.81 70.57 71.14 71.03 77.95

MBHx 34.6 35.51 35.51 44.23 66.43 67.55 67 74.76
MBHy 39.78 40.35 40.39 49 68.5 69.67 69.6 76.94

Combine 55.27 55.8 55.45 59.7 81.37 81.65 81.57 86.57

TABLE III. COMPARISON WITH THE STATE OF THE ART.

KTH HMDB51 UCF101
Methods Acc. Methods Acc. Methods Acc.

[3] 91.8% [17] 31.8% Winner1 85.9%
[25] 95.6% [26] 42.1%
[2] 81.16% [27] 46.6%

[17] 92.1% [7] 57.2%
Ours 94.44% Ours 59.7% Ours 86.57%

learning have little influence on classification performance in
previous section, we just explore the performance of different
encoding methods with IDT. Table II shows the results of
several encoding methods. The dictionaries are yielded by k-
means with size of 8k for VQ, SA-5, and LLC-5, and 512
for FV. We do not evaluate SC due to that it is impractical
to employ SC for encoding more than 1 billion features (the
estimated cost is half a year by a laptop with dual-core).

The same observation can be found in Table II. Fisher vec-
tor performs best on both datasets as expected. Both SA-5 and
LLC-5 obtain slight better results than VQ for single feature.
However, we also notice that the performance gap among these
encoding methods becomes smaller when multiple descriptors
are fused. We explain that the complementary property among
different descriptors reduce the influence of different encoding
methods on final performance.

D. Comparison with the state of the art

Table III compares our best results with the state of the art.
For the KTH dataset, we see our result is comparable to most
of recently published results by just using STIP feature. For
both the HMDB51 and UCF101 datasets, we achieve slight
better results than the state-of-the-art results.

IV. CONCLUSION

In this paper, we conduct extensive experiments to
evaluate the effects of dictionary learning methods and
encoding schemes for human action recognition. We find that
it is not necessary to keep specific dictionary learning methods
for certain encoding methods. We also analyze the results
from the views of dataset complexity, dictionary size, and the
computational cost. Finally, we achieve the state-of-the-art
results on the HMDB51 and UCF101 datasets by applying
our best configuration with improved dense trajectory fearures.
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