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Abstract— Convolutional neural networks (CNNs) have made
remarkable progress on scene recognition, partially due to these
recent large-scale scene datasets, such as the Places and Places2.
Scene categories are often defined by multi-level information,
including local objects, global layout, and background environ-
ment, thus leading to large intra-class variations. In addition,
with the increasing number of scene categories, label ambiguity
has become another crucial issue in large-scale classification. This
paper focuses on large-scale scene recognition and makes two
major contributions to tackle these issues. First, we propose a
multi-resolution CNN architecture that captures visual content
and structure at multiple levels. The multi-resolution CNNs are
composed of coarse resolution CNNs and fine resolution CNNs,
which are complementary to each other. Second, we design two
knowledge guided disambiguation techniques to deal with the
problem of label ambiguity: 1) we exploit the knowledge from the
confusion matrix computed on validation data to merge ambigu-
ous classes into a super category and 2) we utilize the knowledge
of extra networks to produce a soft label for each image. Then,
the super categories or soft labels are employed to guide CNN
training on the Places2. We conduct extensive experiments on
three large-scale image datasets (ImageNet, Places, and Places2),
demonstrating the effectiveness of our approach. Furthermore,
our method takes part in two major scene recognition challenges,
and achieves the second place at the Places2 challenge in ILSVRC
2015, and the first place at the LSUN challenge in CVPR 2016.
Finally, we directly test the learned representations on other
scene benchmarks, and obtain the new state-of-the-art results
on the MIT Indoor67 (86.7%) and SUN397 (72.0%). We release
the code and models at https://github.com/wanglimin/MRCNN-
Scene-Recognition.
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I. INTRODUCTION

SCENE recognition is a fundamental problem in computer
vision, and has received increasing attention in the past

few years [1]–[11]. Scene recognition not only provides rich
semantic information of global structure [12], but also deliv-
ers meaningful context that facilitates other related vision
tasks, such as object detection [13]–[15], event recogni-
tion [16]–[18], and action recognition [19]–[21]. In general,
it is assumed that scene is composed of specific objects
arranged in a certain layout, so that scene categories are often
defined by multi-level information, including local objects,
global layout, background environment, and possible interac-
tions between them. Compared with object categories, the con-
cept of scene is more subjective and complicated, so that there
may not exist consensus on how to define a scene category.
These pose main challenges for developing an effective and
robust algorithm that is able to compute all these multi-level
information from images for scene recognition.

Recently, large-scale scene datasets (e.g., the Places [22] and
Places2 [23]) have been introduced to advance the research on
scene understanding, allowing to train powerful convolutional
neural networks (CNNs) [24] for scene classification. These
large-scale datasets consist of a rich scene taxonomy, which
includes rich categories to cover the diverse visual environ-
ments of our daily experience. With these scene category
information, scene keywords could be sent to image search
engines (e.g., Google Images, Bing Images, or Flicker), where
millions of images can be downloaded, and then be further sent
to Amazon Mechanical Turk for manual annotation. However,
as the number of classes grows rapidly, these visual categories
start to overlap with each other. Thus there may exist label
ambiguity among these scene classes. As shown in Figure 1,
images in cubicle office and office cubicles categories are
easily confused with each other, similar ambiguities happen
in baseball field and stadium baseball. Partially due to this
reason, even the human top1 error rate is still relatively high
on the SUN397 dataset (around 30%) [25].

Due to the inherent uncertainty of scene concepts and
increasing overlap among different categories, it is challenging
to conduct scene recognition on large-scale datasets containing
hundreds of classes and millions of images. Specifically,
current large-scale datasets pose two major challenges for
scene classification, namely visual inconsistence and label
ambiguity.

• For visual inconsistence, we refer to the fact that there
exist large variations among images from the same scene

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2056 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 4, APRIL 2017

Fig. 1. Image examples from the Places2 dataset. Top Row: we show images
from two separate scene classes (i.e., Kitchen and Campus). We notice that
large intra-class variations are contained in these images. Bottom Row: we
give two pairs of scene categories (i.e., Cubicle office and Office cubicles,
Baseball field and Stadium baseball)). As can be found, images from these
pairs of ambiguous categories are highly confused.

category. Since it is difficult to define scene categories
objectively, natural images are annotated according to
annotators’ subjective experiences when a dataset is
created. This naturally leads to strong diversity on large-
scale scene datasets. For instance, images in kitchen cate-
gory contain significantly diverse context and appearance,
ranging from a whole room with many cooking wares to
a single people with food, as shown in Figure 1.

• For label ambiguity, we argue that some scene categories
may share similar visual appearance, and could be easily
confused with others. As the number of scene classes
increases, the inter-category overlaps can become non-
negligible. For example, as shown in Figure 1, the base-
ball field category is very similar to the stadium baseball,
and they both contain identical representative objects,
such as track and people.

These challenges motivate us to develop an effective
multi-resolution disambiguation model for large-scale scene
classification, by making two major contributions: (1) we pro-
pose a multi-resolution convolutional architecture to capture
multi-level visual cues of different scales; (2) We introduce
knowledge guided strategies to effectively disambiguate sim-
ilar scene categories. First, to deal with the problem of
visual inconsistence (i.e., large intra-class variations), we come
up with a multi-resolution CNN framework, where CNNs at
coarse resolution are able to capture global structure or large-
scale objects, while CNNs at fine resolution are capable of
describing local detailed information of fine-scale objects.
Intuitively, multi-resolution CNNs combine complementary
visual cues of multi-level concepts, allowing them to tackle the
issue of large intra-class variations efficiently. Second, for the
challenge of label ambiguity (i.e., small inter-class variations),
we propose to reorganize the semantic scene space to release
the difficulty of training CNNs, by exploiting extra knowledge.
In particular, we design two methods with the assistance
from confusion matrix computed on validation dataset and
publicly available CNN models, respectively. In the first
method, we investigate the correlation of different classes and
progressively merge similar categories into a super category.

In the second one, we use the outputs of extra CNN models
to generate new labels. These two methods essentially utilize
extra knowledge to produce new labels for training images.
These new labels are able to guide the CNN to a better
optimization and reduce the effect of over-fitting.

To verify the effectiveness of our method, we choose the
successful BN-Inception architecture [26] as our basic network
structure, and demonstrate the advantages of multi-resolution
CNNs and knowledge guided disambiguation strategies on a
number of benchmarks. More specifically, we first conduct
experiments on three large-scale image recognition datasets,
including the ImageNet [27], Places [22], and Places2 [23],
where our method obtains highly competitive performance.
Then, we further apply the proposed framework on two
high-impact scene recognition challenges, namely the
Places2 challenge (held in ImangeNet large scale visual recog-
nition challenge [28]) and the large-scale scene understand-
ing (LSUN) challenge in CVPR 2016. Our team secures
the second place at the Places2 challenge 2015 and the first
place at the LSUN challenge 2016. Furthermore, we evaluate
the generalization ability of our learned models by testing
them directly on the MIT Indoor67 [29] and SUN397 [25]
benchmarks, with new state-of-the-art performance achieved.
Finally, we present several failure cases by our models to
highlight existing challenges for scene recognition, and discuss
possible research directions in the future.

The rest of the paper is organized as follows. In Section II,
we review related works from aspects of scene recognition,
deep networks for image recognition, multi-scale representa-
tion, and knowledge transferring. Section III introduces the
architecture of multi-resolution convolutional neural networks.
In Section IV, we develop two types of knowledge guided
disambiguation strategies to improve the performance of scene
recognition. We report experimental results and analyze differ-
ent aspects of our method in Section VI. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

In this section, we briefly review previous works related
to our method, and clarify the difference between them.
Specifically, we present related studies from three aspects:
(1) scene recognition, (2) deep networks for image recognition,
(3) multi-scale representation, and (4) knowledge transfer.

A. Scene Recognition

The problem of scene recognition has been extensively
studied in previous works. For example, Lazebnik et al. [30]
proposed spatial pyramid matching (SPM) to incorporate spa-
tial layout into bag-of-word (BoW) representation for scene
recognition. Partizi et al. [31] designed a reconfigurable ver-
sion of SPM, which associated different BoW representations
with various image regions. The standard deformable part
model (DPM) [14] was extended to scene recognition by
Pandey and Lazebnik [32]. Quattoni and Torralba [29] studied
the problem of indoor scene recognition by modeling the
spatial layout of scene components. Mid-level discriminative
patches or parts were discovered and identified for scene
recognition in [33] and [34]. Recently, deep convolutional
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networks have been exploited for scene classification by
Zhou et al. [22], where they introduced a large-scale Places
dataset and advanced the state of the art of scene recognition
by a large margin. After this, they introduced a more chal-
lenging dataset [23] with more categories and images, coined
as Places2.

Our paper differs from these previous works from two
aspects: (1) We tackle scene recognition problem with a much
larger scale database, where new problems, such as large visual
inconsistent and significant category ambiguity, are raised.
These make our problem more challenging than all previous
ones on this task. (2) We design a multi-resolution architecture
and propose a knowledge guided disambiguation strategy that
effectively handle these new problems. Large-scale problem is
the fundamental challenge in computer vision, we provide a
high-performance model on such a challenging dataset, setting
our work apart from all previous ones on scene recognition.

B. Deep Networks for Image Recognition

Since the remarkable progress made by AlexNet [35]
on ILSVRC 2012, great efforts have been devoted to the
problem of image recognition with various deep learning
techniques [8], [26], [36]–[42]. A majority of these works
focused on designing deeper network architectures, such as
VGGNet [38], Inception Network [39], [41], and ResNet [42]
which finally contains hundreds of layers. Meanwhile, several
regularization techniques and data augmentations have been
designed to reduce the over-fitting effect of the network, such
as dropout [35], smaller convolutional kernel size [36], [38],
and multi-scale cropping [38]. In addition, several optimization
techniques have been also proposed to reduce the difficulty of
training networks, so as to improve recognition performance,
such as Batch Normalization (BN) [26] and Relay Back
Propagation [8].

These works focused on general aspect of applying deep
networks for image classification, in particular for object
recognition, without considering the specifics of scene recogni-
tion problem. As discussed, sense categories more complicated
than object classes. They are defined by multi-level visual
concepts, ranging from local objects, global arrangements,
to complex interactions between them. Complementary to pre-
vious works on object classification, we conduct a dedicated
study on the difficulties of scene recognition, and accordingly
come up with two new solutions that address the crucial
issues existed in large-scale scene recognition. We propose
a multi-resolution architecture to capture visual information
from multi-visual concepts, and wish to remedy the visual
inconsistence problem. In addition, we design a knowledge
guided disambiguation mechanism that effectively handles the
issue of label ambiguity, which is an another major challenge
for this task.

C. Multi-Scale Representation

The idea of multi-scale or multi-resolution representations
has been widely studied in the computer vision research. First,
the multi-scale cropping was first adopted for network training
by the VGGNet [38] and then commonly used by the following
deep networks, such as ResNet [42] and Inception V3 [41].

The multi-scale representation have been also exploited in
variety of tasks, such as fine-grained recognition [43], scene
recognition [11], and so on. Zhang et al. [43] generated multi-
scale part proposals and these proposals yielded the multi-
scale image representation for fine-grained categorization.
Wang et al. [11] extracted multi-scale patches for PatchNet
modeling and VSAD representations.

Different from these multi-scale cropping and multi-
scale representation, our multi-resolution architecture captures
multi-level information from different resolutions with distinct
input image sizes and network architectures, while those
previous works all rely on a single input size and network
architecture. Meanwhile, the multi-scale cropping (scale jitter-
ing) is complementary to our multi-resolution architecture and
we also exploit this data augmentation in our training method.

D. Knowledge Transfer

Knowledge distillation or knowledge transfer between dif-
ferent CNN models is becoming an active topic recently [44]–
[48]. The basic idea of using the outputs of one net-
work as an associated supervision signal to train a differ-
ent model was invented by Bucila et al. [49]. Recently,
Hinton et al. [44] adopted this technique to compress model
ensembles into a smaller one for fast deployment. Similarly,
Romero et al. [45] utilized this approach to help train a deeper
network in multiple stages. Tzeng et al. [47] explored this
method to the problem of domain adaption for object recog-
nition. Gupta et al. [46] proposed to distill knowledge across
different modalities, and used RGB CNN models to guide the
training of CNNs for depth maps or optical flow field. Zhang
et al. [48] developed a knowledge transfer technique to exploit
soft codes of flow CNNs to assist the training of motion vector
CNNs, with a goal of real-time action recognition from videos.

Our utilization of soft codes as an extra supervision sig-
nal differs from these methods mainly from two points:
(1) we conduct knowledge transfer crossing different visual
tasks (e.g., object recognition vs. scene recognition), while
previous methods mostly focused on the same task; (2) we
exploit these soft codes to circumvent label ambiguity problem
existed in large-scale scene recognition.

III. MULTI-RESOLUTION CONVOLUTIONAL

NEURAL NETWORKS

Generally, a visual scene can be defined as a view that
objects and other semantic surfaces are arranged in a meaning-
ful way [50]. Scenes contain semantic components arranged in
a spatial layout which can be observed at a variety of spatial
scales, e.g., the up-close view of an office desk or the view
of the entire office. Therefore, when building computational
models to perform scene recognition, we need to consider
this multi-scale property of scene images. Specifically, in this
section, we first describe the basic network structure used in
our exploration, and then present the framework of multi-
resolution CNN.

A. Basic Network Structures

Deep convolutional networks have witnessed great suc-
cesses in image classification and many powerful network
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Fig. 2. Multi-resolution CNN. We propose a multi-resolution architecture, which is composed of coarse resolution CNNs (normal bn-inception) and fine
resolution CNNs (deeper bn-inception). The coarse resolution CNNs capture visual structure at a large scale, while fine resolution CNNs describe visual
pattern at a relatively smaller scale. The receptive fields (red boxes) of two CNNs correspond to the regions of different scales, allowing their prediction
scores to be complementary.

architectures have been developed, such as AlexNet [35],
GoogLeNet [39], VGGNet [38], and ResNet [42]. As the
dataset size of Places2 is much larger than that of ImageNet,
we need to trade off between recognition performance and
computational cost when building our network structure. In our
experiments, we employ the inception architecture with batch
normalization [26] (bn-inception) as our network structure.
In addition to its efficiency, the inception architecture leverages
the idea of multi-scale processing in its inception modules,
making it naturally suitable for building scene recognition
networks.

As shown in Figure 2, the original bn-inception architecture
starts with two convolutional layers and max pooling layers
which transform a 224 ×224 input image into 28 ×28 feature
maps. The small size of feature maps allows for fast processing
in the subsequent ten inception layers, two of which have
stride of 2 and the rest have stride of 1. This results in
7 × 7 feature maps, and a global average pooling is used to
aggregate these activations across spatial dimensions. Batch
Normalization (BN) is applied to the activations of convolu-
tional layers, following by the Rectified Linear Unit (ReLU)
for non-linearity.

B. Two-Resolution Architectures

The proposed Multi-Resolution CNNs are decomposed into
fine resolution and coarse resolution components. The coarse
resolution CNNs are the same with the normal bn-inception
described in previous subsection, while the fine resolution
CNNs share a similar but deeper architecture.

1) Coarse Resolution CNNs: operate on image regions of
size 224 × 224, and contain totally 13 layers with weights.
The network structure of coarse resolution CNNs is referred
as normal bn-inception, since it has the same structure as the
original one in [26]. It captures visual appearance and structure
at a relatively coarse resolution, focusing on describing global
arrangements or objects at larger scale. However, the coarse
resolution CNNs may discard local details, such as those
fine-scale objects, which are important cues to discriminate

sense categories. A powerful scene network should be able
to describe multi-level visual concepts, so that it requires to
capture visual content in a finer resolution where local detail
information is enhanced.

2) Fine Resolution CNNs: are developed for high-resolution
images of 384 × 384, and process on image regions of
336 × 336. By taking a larger image as input, the depth of
the network can be increased, allowing us to design a new
model with increasing capability. By trading off model speed
and network capacity, we add three extra convolutional layers
on top of the inception layers, as illustrated in Figure 2. For
these newly-added convolutional layers, the pad sizes are set
as zeros, so as to keep the resulting feature map as the same
size of 7 × 7 before the global average pooling. We refer
this network structure of fine resolution CNN as deeper bn-
inception, which aims to describe image information and
structure at finer scale, allowing it to capture meaningful local
details.

Our two-resolution CNNs take different resolution images
as input, so that their receptive fields of the corresponding
layers describe different-size regions in the original image,
as illustrated in Figure 2. They are designed to describe
objects at different scales for scene understanding. Therefore,
the prediction scores of our two-resolution models are com-
plementary to each other, by computing an arithmetic average
of them.

3) Extension to Multi-Resolution CNNs: The above the
description is about two-resolution CNNs (i.e., learning CNNs
from two resolutions: 256 × 256 and 384 × 384), and the idea
could be easily extended to multi-resolution CNNs. In practice,
we can train CNNs from multiple resolutions, and the CNNs
learned from finer resolution are expected to be equipped
richer capacity of modeling visual information and structure.
Meanwhile, CNNs trained from more resolution complement
each other more effectively and is hoped to improve the final
recognition performance greatly. In experiment, we conduct
experiments with four resolutions (128, 256, 384, 512) to
extensively study the influence of image resolution on the
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recognition performance and fully reveal the modeling capac-
ity of our multi-resolution CNN framework.

4) Discussion: Although sharing similar ideas with com-
mon multi-scale training strategy [38], the proposed multi-
resolution CNNs differ from it distinctly. The network input
image sizes are different in our two-resolution architec-
tures (224 × 224 and 336 × 336), while multi-scale training
in [38] only uses a single image scale, 224 × 224. This allow
us to design two distinct network structures (the bn-inception
and deeper bn-inception) with enhanced model capability,
which are capable of handling different image scales. The
conventional multi-scale training simply uses a single network
structure. Thanks to these differences, the proposed multi-
resolution architecture is more suitable to capture different
level visual information for scene understanding. Moreover,
the multi-resolution architecture is complementary to multi-
scale training, and can be easily combined with it as stated in
next paragraph.

5) Training: The training of multi-resolution CNNs are
performed for each resolution independently. We train each
CNNs according to common setup of [35], [38]. We use
the mini-batch stochastic gradient descent algorithm to learn
the network weights, where the batch size is set as 256 and
momentum set to 0.9. The learning rate is initialized as 0.1
and decreases according to a fixed schedule determined by
the dataset size and specified in Section V. Concerning data
augmentation, the training images are resized as N ×N , where
N is set as 256 for the bn-inception, and 384 for the deeper
bn-inception. Then, we randomly crop a w × h region at a set
of fixed positions, where the cropped width w and height h are
picked from {N, 0.875N, 0.75N, 0.625N, 0.5N}. Then these
cropped regions are resized as M × M for network training,
where M depends on the image resolution N and is set as
0.875N . Meanwhile, these crops undergo a horizontal flipping
randomly. Our proposed cropping strategy is an efficient way
to implement the scale jittering [38].

IV. KNOWLEDGE GUIDED DISAMBIGUATION

As analyzed above, many scene categories may overlap
with others in large-scale datasets, such as Places2 [23]. The
increasing number of scene categories causes the problem of
label ambiguity, which makes the training of multi-resolution
CNNs more challenging. In this section, we propose two
simple yet effective methods to handle the issue of label
ambiguity by exploiting extra knowledge. Specifically, we first
introduce the method of utilizing knowledge from confusion
matrix. Then we propose the second one which resorts to
knowledge from extra networks.

A. Knowledge From Confusion Matrix

As the number of scene classes increases, the difference
between scene categories becomes smaller, and some scene
classes are easily confused with others from visual appearance.
A natural way to relieve this problem is to re-organize scene
class hierarchy, and merge those highly ambiguous ones into a
super category. The key to merge them accurately is to define
the similarity between categories. However, it is difficult to

Algorithm 1 Merge Similar Classes Into Super Category

define this similarity (ambiguity) and merge them manually,
which is highly subjective and extremely time-consuming on
such a large-scale problem. Here we propose a simple yet
effective approach that automatically merges visually ambigu-
ous scene categories.

Specifically, we first train a deep model on the original
training set of the Places2 which contains 401 classes. Then,
we use the trained model to predict image categories on
the validation set of the Places2. The confusion matrix is
computed by using the predicted categories and ground-truth
labels. This confusion matrix displays crossing errors between
pairs of categories, which implicitly indicates the degree of
ambiguity (similarity) between them. Hence, it is principle
to employ this confusion matrix for calculating the pairwise
similarities of scene classes. Formally, we define the similarity
as follows:

S = 1

2
(C + C�), (1)

where C ∈ R
N×N is the confusion matrix, Ci j represents the

probability of classifying i th class as j th class, the larger of
this value indicates higher ambiguity between two categories.
N is the number of scene classes. The equation ensures the
similarity measure is a symmetric metric.

This similarity measure computes underline relationships
between categories, providing an important cue for construct-
ing consistent super categories. To this end, we propose
a bottom-up clustering algorithm that progressively merges
ambiguous categories, as shown in Algorithm 1. At each iter-
ation, we pick a pair of categories with the largest similarity,
and merge them into a super category. Then we update the
similarity matrix S accordingly, by deleting i∗th and j∗th rows
and columns, and at the same time, adding a new row and
column defined as 1

2 (Si∗ +S j∗), where Si∗ denotes the i∗th row
vector of S. This iteration repeats until there is no similarity
value larger than τ . At the end, all ambiguous classes are
merged into a smaller number of categories, resulting in a more
consistent category structure that greatly facilitates learning a
better CNN.

In current implementation, the original 401 scene classes in
the Places401 are re-organized into 351, 372, and 386 super-
categories by varying the threshold τ from 0.3, 0.5 to 0.7.



2060 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 4, APRIL 2017

Fig. 3. Knowledge guided disambiguation. We propose two knowledge guided disambiguation methods to deal with the problem of label ambiguity.
First (in left), we utilize the knowledge of confusion matrix to merge ambiguous scene classes into a super category, and re-train our CNNs on these re-labeled
data. Second (in right), we exploit the knowledge of extra networks (trained on a different dataset) to provide additional supervised information for each
image (soft label), which are used to guide the CNN training in multi-task learning framework.

Fig. 4. Hard and soft labels. Several image examples with ground truth from the Places2 dataset. First (left column), we show the original hard labels
provided by the dataset. Second (middle column), the hard labels are shown after merging visually ambiguous classes (by our first disambiguation approach).
As can be found, the classes of baseball field and stadium baseball are merged into super category 1, while the classes of cubicle office and office cubicles
are merged into super category 2. Finally (right column), we provide the soft labels produced by an extra network (by our second disambiguation approach),
where scene content is described by the distribution over common objects from existing ImangeNet CNNs (knowledge models).

In test phase, the re-trained model only predicts scores over
super category labels. We transfer them to the original 401 cat-
egories, by equally dividing the probability of each super
category into its sub categories. This simple strategy turns out
to be effective in practice.

B. Knowledge From Extra Networks

Knowledge disambiguation by confusion matrix involves
class-level re-organization, where we simply consider the
similarity between whole classes, and merge them directly into
a super category. However, this re-labeling (merging) strategy
treats all images in a class equally, and ignores intra-class dif-
ference appeared in each single image. The confusion matrix
defines category-level ambiguity (similarity) by computing the
error rates with other classes, which means that only part of
images from these visually ambiguous categories are classified
incorrectly. It is more principle to involve image-level re-
labeling strategy based on visual content of each image.
Hence, in this subsection, we propose to exploit knowledge
from extra networks to incorporate the visual information of
each single image into this relabeling procedure.

However, it is prohibitively difficult to accomplish the
work of image-level re-labeling manually in such a large-
scale dataset. Furthermore, the category ambiguity may
happen again, since it is challenging to define an objective
re-labeling criteria. Fortunately, many CNN models trained
on a relatively smaller and well-labeled dataset (e.g., the
ImageNet [27] or Places [22]) are publicly available. These
pre-trained models encode rich knowledge from different
visual concepts, which is greatly helpful to guiding the image-
level re-labeling procedure. They are powerful to extract
high-level visual semantics from raw images. Therefore,
we utilize these pre-trained models as knowledge networks
to automatically assign soft labels to each image by directly
using their outputs.

Essentially, this soft label is a kind of distributed represen-
tation, which describes the scene content of each image with
a distribution over the pre-trained class space. e.g., common
object classes by using the ImageNet [27], or a smaller
subset of scene categories by using the Places [22]. As shown
in Figure 4, for instance, the content of dinning room could
be described by distribution of common objects, where objects
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such as dinning table and door may dominate this distribution.
For another scene category such as office, the objects of
screen and desktop computer may have high probability mass.
Utilizing this soft label to represent image content exhibit
two main advantages: (1) For visually ambiguous classes,
they typically share similar visual elements such as objects
and background. Hence they may have similar soft labels
which encode the correlation of scene categories implicitly.
(2) Compared with class-level re-labeling scheme, the soft
label depends on single image content, so that it could be
varied for different images in the same class. Normally, images
from highly ambiguous classes may share similar but not
identical soft labels. Hence, such soft labels are able to capture
subtle difference between confused images, making them more
informative and discriminative than hard labels.

In current implementation, we consider the complementarity
between ground-truth hard labels and soft labels from knowl-
edge networks, and design a multi-task learning framework
that utilizes both labels to guide CNN training, as shown
in Figure 3. Specifically, during the training procedure, our
CNNs predict both the original hard labels and the soft
labels simultaneously, by minimizing the following objective
function:

�(D) = −(
∑

Ii∈D

K1∑

k=1

I(yi = k) log pi,k +λ
∑

Ii∈D

K2∑

k=1

qi,k log fi,k ),

(2)

where D denotes the training dataset. Ii is the i th image,
yi is the ground-truth scene label (hard label), and pi is
corresponding predicted scene label. fi is its soft code (soft
label) produced by extra knowledge network, and qi is the
predicted soft code of image Ii . λ is a parameter balancing
these two terms. K1 and K2 are the dimensions of hard label
and soft label, corresponding to the numbers of classes in main
model and the knowledge model, respectively.

This multi-task objective function forces the training pro-
cedure to optimize the classification performance of original
scene classification, and imitate the knowledge network at
the same time. This multi-task learning framework is able
to improve generalization ability by exploiting additional
knowledge contained in extra networks as an inductive bias,
and reduce the effect of over-fitting on the training dataset.
For example, object concepts learned by the ImageNet pre-
trained model provide important cues for distinguishing scene
categories. As we shall see in Section V, this framework
further improves the performance of our proposed multi-
resolution CNNs.

V. EXPERIMENTS

In this section, we describe the experimental setting
and report the performance of our proposed method
on six scene benchmarks, including the ImageNet [27],
Places [22], Places2 [23], LSUN [51], MIT Indoor67 [29],
and SUN397 [25] databases. We first describe these datasets
and our implementation details. Then, we verify the effec-
tiveness of multi-resolution CNNs by performing extensive
experiments on three large-scale datasets. After this, we

conduct experiments to explore the effect of knowledge guided
disambiguation on the Places2. Furthermore, we report the per-
formance of our method on two large-scale scene recognition
challenges, namely the Places2 challenge in ILSVRC 2015,
and the LSUN challenge in CVPR 2016. Meanwhile, we inves-
tigate generalization ability of our models, by directly test-
ing the learned representations on the datasets of MIT
Indoor67 [29] and SUN397 [25]. Finally, we present sev-
eral failure examples by our methods, and discuss possible
reasons.

A. Large-Scale Datasets and Implementation Details

We first evaluate our method on three large-scale image
classification datasets, namely ImageNet [27], Places [22],
and Places2 [23]. Results are reported and compared on their
validation sets, since the ground-truth labels of their test sets
are not available.

The ImageNet [27] is an object-centric dataset, and is
the largest benchmark for object recognition and classifica-
tion.1 The dataset for ILSVRC 2012 contains 1,000 object
categories (ImageNet-1k). The training data contains around
1,300,000 images from these object categories. There are
50,000 images for validation dataset and 100,000 images for
testing. The evaluation measure is based on top5 error, where
algorithms will produce a list of at most 5 object categories
to match the ground truth.

The Places [22] is a large-scale scene-centric dataset,2

including 205 common scene categories (referred to
as Places205). The training dataset contains around
2,500,000 images from these categories. In the training
set, each scene category has the minimum 5,000 and
maximum 15,000 images. The validation set contains
100 images per category (a total of 20,500 images), and
the testing set includes 200 images per category (a total
of 41,000 images). The evaluation criteria of the Places is
also based on top5 error.

The Places2 [23] is extended from the Places dataset,
and probably the largest scene recognition dataset currently.3

In total, the Places2 contains more than 10 million images
comprising more than 400 unique scene categories. The dataset
includes 5000 to 30,000 training images per class, which
is consistent with real-world frequencies of occurrence. The
dataset used in the Places2 challenge 2015 contains 401 scene
categories (Places401). The training dataset of the Places2 has
around 8,100,000 images, while the validation set contains
50 images per category, and the testing set has 950 images
per category. In consistent with our finding of label ambi-
guity, the latest version for the Places2 challenge 2016, has
365 scene categories, by merging similar scene categories
into a single category (Places365). The Places365 dataset
has two training subsets: (1) Places365-standard has around
1.8 million training images and each category has around
5,000 images, and (2) Places365-challenge totally has around
8 million training images. We perform experiments and report
results on the datasets of Places401 and Places365-standard.

1http://image-net.org/
2http://places.csail.mit.edu/
3http://places2.csail.mit.edu/
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TABLE I

CLASSIFICATION ERROR OF NORMAL BN-INCEPTION, DEEPER BN-INCEPTION, AND TWO-RESOLUTION
CNN ON THE VALIDATION DATA OF IMAGENET-1K, PLACES205, PLACES401, AND PLACES365

TABLE II

CLASSIFICATION ERROR OF CNNs TRAINED FROM DIFFERENT RESOLUTIONS ON THE VALIDATION DATA OF IMAGENET-1K AND PLACES365

The training details of our proposed method on these three
datasets are similar, as specified in Section III. The only
difference is on the iteration numbers, due to the different
sizes of training data on these datasets. Specifically, on the
ImageNet and Places205 datasets, we decrease learning rate
every 200,000 iterations and the whole training procedure
stops at 750,000 iterations, while on the Places401 dataset,
learning rate is decreased every 350,000 iterations and the
whole training process ends at 1,300,000 iterations. For the
dataset of Places365-standard, we use step size of 150,000 to
decrease the learning rate and the whole train process stops
at 600,000 iterations. To speed the training process, we use
the multi-GPU extension [52] of Caffe [53] toolbox for our
CNN training.4 For testing our models, we use the common
5 crops (4 corners and 1 center) and their horizontal flipping
for each image at a single scale, thus having 10 crops in total
for each image. The final score is obtained by taking average
over the predictions of 10 crops.

B. Evaluation on Multi-Resolution CNNs

1) Two-Resolution CNNs: We begin our experimental study
by investigating the effectiveness of two-resolution CNNs on
the validation sets of the ImageNet-1k, Places205, Places401,
and Places365. Specifically, we study three architectures on
all these datasets: (1) normal BN-Inception, which is trained
from 256 × 256 images, (2) deeper BN-Inception, which has
a deeper structure and is trained from 384 × 384 images, and
(3) two-resolution CNN, which is the combination of both
models, by using equal fusion weights.

The results are summarized in Table I. First, from com-
parison of normal BN-Inception and deeper BN-Inception,
we conclude that CNNs trained from fine resolution images
(384 × 384) are able to yield better performance than those
trained by coarse resolution images (256 × 256) on all three
datasets. Such superior performance may be ascribed to the
fact that fine resolution images contain richer information of
visual content and more meaningful local details. In addition,
the deeper BN-Inception is able to exhibit higher modeling
capacity by using a deeper model, making it more powerful
to capture complicated scene content. Second, we take an

4https://github.com/yjxiong/caffe

arithmetic average over the scores of normal BN-Inception and
deeper BN-Inception as the results of two-resolution CNNs.
This simple fusion scheme further boosts the recognition
performance on three datasets. These improvements indicate
that the multi-level information captured by two CNNs trained
from different resolution images are strongly complementary
to each other. Finally, we further compare our two-resolution
CNNs with other baselines (such as AlexNet and VGGNet-16)
on three datasets, and our approach outperforms these base-
lines by a large margin. It is worth noting that our two-
resolution CNN is a modular learning framework that is readily
applicable to any existing network structure to enhance its
capacity.

2) Multi-Resolution CNNs: After verifying effectiveness of
training CNNs from two resolutions on four datasets, we per-
form an extensive study to investigate the performance of
training CNNs from multiple resolutions (128, 256, 384, 512)
on the datasets of ImageNet-1k (object centric) and Places365
(scene centric). To keep the setup simple and comparison
fair, the network architectures of different resolutions are built
based on the original BN-Inception structure [26] by stacking
several convolutional layers after the Inception5b layer for
the fine resolution CNNs (i.e., 384 × 384 and 512 × 512),
and changing the pooling size of global pooling layer into
3 × 3 for the coarse resolution CNNs (i.e., 128 × 128).
The experimental results are summarized in Table II. From
the results, we see that CNNs trained at a finer resolution
can yield a better performance for both object centric and
scene centric datasets. Meanwhile, we also notice that the
resolution of 512×512 is able to improve recognition accuracy
on the dataset of Places365, while the top5 classification
accuracy already saturates on the dataset of ImageNet-1k.
We also combine the recognition results from four resolutions
and is able to obtain better performance than two-resolution
CNNs. Our empirical study highlights the importance of image
resolution in the network design and may provide some
hints for the future work on image recognition with deep
learning.

C. Evaluation on Knowledge Guided Disambiguation

We now turn to study the effectiveness of our proposed
knowledge guided disambiguation techniques described in
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Fig. 5. Exploration study. Left: Top5 classification error of different numbers of super categories on the Places401 dataset; Center: Top5 classification error
of extra network based disambiguation methods at resolution of 256 × 256 on the Places365 dataset; Right: Top5 classification error of extra network based
disambiguation methods at resolution of 384 × 384 on the Places365 dataset.

Section IV. To handle the issue of category ambiguity in large-
scale scene recognition, we proposed two disambiguation tech-
niques, one of which is based on the knowledge of confusion
matrix on the validation dataset, and the other one explores
knowledge from extra networks. As the label ambiguity is par-
ticularly important for large-scale scene recognition, we per-
form experiment on the Places401 and Places365 dataset.

1) Knowledge From Confusion Matrix: We first verify the
effectiveness of merging similar categories into super cate-
gories on the dataset of Places401. According to the confusion
matrix, we merge 401 scene categories into 386, 372, and
351 super categories by setting the threshold τ in Algorithm 1
to 0.3, 0.5, and 0.7. The results are shown in the left of
Figure 5. We see that containing 372 super categories achieves
the lowest top5 classification error (17.3%) and properly
setting the parameter of threshold τ is crucial to improve
recognition accuracy. Therefore, in the remaining experiment,
we fix the parameter τ as 0.5.

We fix the number of super categories as 372 (A3) and
compare with the original network (A0) as shown in Table III.
As can be found, by utilizing knowledge from confusion
matrix, the performance of normal BN-Inception network is
improved slightly. This result is a little bit surprising, as we use
less category information, but still obtain higher performance.
This result indicates that label ambiguity may leads to the
problem of over-fitting on subtle differences in an effort to
distinguish visually closed categories (e.g., baseball field vs.
stadium baseball). But these fine-scale differences may not
generalize well on unseen images, so as to decrease the
recognition performance on testing set. This agrees with the
findings of the Places team and their latest version (Places365)
has already merged very similar scene categories.

2) Knowledge From Extra Networks: In our second dis-
ambiguation approach, we utilize two extra networks: one
pre-trained on the ImageNet-1k dataset (referred as object
network) and one pre-trained on the Places205 (referred as
scene network). We use the outputs of these extra networks as
soft labels to guide the training of our CNNs in a multi-task
learning framework. An important parameter in this framework
is λ in Equation (2). We first perform exploration study to
determine this parameter on the dataset of Places365. The
experimental results are reported in Figure 5. We can see

TABLE III

TOP5 CLASSIFICATION ERROR OF DIFFERENT KNOWLEDGE GUIDED
DISAMBIGUATION TECHNIQUES ON THE DATASET OF PLACES401

that the top5 classification error of disambiguation by object
network is less sensitive to the parameter λ compared with
scene network. The parameter of λ = 0.5 is the best choice for
scene network disambiguation for both normal BN-Inception
and deeper BN-Inception architectures. Therefore, we fix the
parameter λ as 0.5 in the remaining experimental study.

Next, we give a detailed analysis about the disambiguation
techniques on the datasets of Places401 and Places365. The
numerical results are summarized in Table III and Table IV.
From these result analysis, several conclusions can be drawn
as follows:

• First, our knowledge network based disambiguation tech-
niques are able to improve the recognition accuracy of
original networks on both datasets of Places401 and
Places365. Although the new Places365 dataset already
merges very similar categories, our disambiguation tech-
nique is still capable of regularizing the CNN training and
improving the generalization performance on this dataset.

• Second, comparing the performance of disambiguation
with different knowledge networks, we see that scene net-
work can yield better performance than object network.
For instance, on the dataset of Places365, the network of
A2 obtains the top5 classification error of 13.4%, while
the error rate of A1 is 14.1%. This may be ascribed to
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TABLE IV

TOP5 CLASSIFICATION ERROR OF DIFFERENT KNOWLEDGE GUIDED
DISAMBIGUATION TECHNIQUES ON THE DATASET OF PLACES365

the fact that the scene classes from the Places are more
correlated with the categories in the Places2 than those
object classes in the ImageNet.

• Finally, we explore different network architectures,
including normal BN-Inception (256 × 256), deeper
BN-Inception (384 × 384), and two-resolution CNNs.
We find our proposed knowledge disambiguation method
is able to improve the performance for all network
architectures. For example, on the dataset of Places365,
the fusion of A2 and B2 achieves the classification error
of 12.4%, which is lower than the error rate 13.1% of
fusion of A0 and B0.

Finally, to fully unleash the benefits of our knowledge
disambiguation method, we perform model fusion between
normally trained CNNs and knowledge guided CNNs. From
these results, we see that those knowledge guided CNNs
are complementary to those normally trained CNNs and the
fusion of them can improve performance considerably. For
the normal BN-Inception architecture, the best combination
of (A0) and (A2) reduces the top5 error rate from 17.4% to
16.3% on the dataset Places401 and from 14.3% to 12.9%
on the dataset of Places365. With the deeper BN-Inception
network, on the dataset of Places401, the best combination
of (B0) and (B2) achieves a top5 error of 15.8%, compared to
the original 16.7%, and on the dataset of Places365, similar
improvement is achieved as well (12.8% vs. 14.0%). These
excellent fusion results suggest that our proposed knowledge
guided disambiguation techniques not only improve the per-
formance of the original models, but also provide reliable
complementary models that build stronger model ensembles.

D. Results at the Places2 Challenge 2015

To provide more convincing results, we investigate the
performance of our whole pipeline, including both the multi-
resolution CNNs and knowledge guided disambiguation tech-
niques, on a large-scale scene recognition challenge. Here
we report our results on the Places2 challenge 2015, which
is the largest scene recognition challenge, and was held in
conjunction with the ImageNet large-scale visual recognition
challenge (ILSVRC) [28].

TABLE V

CLASSIFICATION ERROR OF DIFFERENT TEAMS
AT THE PLACES2 CHALLENGE 2015

Results of the Places2 challenge 2015 are summarized
in Table V. Our SIAT_MMLAB team secured the second place
and our challenge solution corresponds to the combination of
models A0+A1+A2+A3+B0. Our solution was outperformed
by the winner method [8], with a 0.5% gap in top5 error in test
phase. The winner method exploited a multi-scale cropping
strategy which leads to large performance gains, while we
just simply used a single-scale cropping method in all our
experiments.

In addition, it is worth noting that our submission did
not contain our best model architecture of B2, due to dead-
line of the challenge. After the challenge, we finished the
training of B2 model, which achieves better performance on
the validation dataset. Finally, we achieve the performance
of 15.5% top5 error on the validation set by using the model
fusion of B0+B1+B2, surpassing the best result of the winner
method (15.7%).

E. Results at LSUN Challenge 2016

In this subsection we further present our results on another
important scene recognition challenge, namely Large-Scale
Scene Understanding (LSUN) challenge, which aims to pro-
vide a different benchmark for large-scale scene classification
and understanding.5 The LSUN classification dataset [51]
contains 10 scene categories, such as dining room, bedroom,
chicken, outdoor church, and so on. For training data, each
category contains a huge number of images, ranging from
around 120,000 to 3,000,000, which is significantly unbal-
anced. The validation data includes 300 images, and the test
data has 1000 images for each category. The evaluation of
LSUN classification challenge is based on top1 classification
accuracy.

In order to verify the effectiveness of our proposed
multi-resolution CNN and knowledge guided disambigua-
tion strategy, we transfer the learned representations on the
Places401 dataset to the classification task of the LSUN chal-
lenge. Specifically, to reduce computational cost and balance
the training samples from each category, we randomly sample
100,000 images from each category as our training data. Then,
we use our learned CNNs on the Places401 dataset as pre-
training models, and fine tune them on the LSUN dataset.
The learning rate is initialized as 0.1, which is decreased by 1

10
every 60,000 iterations. The batch size is set as 256. The whole
training process stops at 180,000 iterations. During the test
phase, by following previous common cropping techniques,
we crop 5 regions with their horizontal flipping, and use

5http://lsun.cs.princeton.edu
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TABLE VI

CLASSIFICATION ACCURACY OF DIFFERENT PRE-TRAINED MODELS
ON THE VALIDATION SET OF LSUN CLASSIFICATION DATASET

TABLE VII

CLASSIFICATION ACCURACY OF DIFFERENT

TEAMS AT THE LSUN CHALLENGE 2016

3 different scales for each image. We take an average over
these prediction scores of different crops as the final result of
an input image.

We report the performance of our fine-tuned CNNs
on the validation set of LSUN dataset, building on var-
ious Places401 pre-trained models. Results are presented
in Table VI. First, by comparing the performance of CNNs
at different resolutions, we find that the deeper BN-Inception
networks learned on finer resolution images yield better results
than the normal BN-Inception networks (89.9% vs. 90.5%).
Second, considering the strategy of knowledge guided disam-
biguation, both object and scene guided CNNs are capable of
bringing improvements (around 0.5%) over those non-guided
CNNs. Finally, we fuse prediction scores of multiple net-
works, and obtain the final performance with a top1 accuracy
of 91.8% on the validation set of LSUN dataset.

We further provide the results of our method on the test
set of LSUN dataset, by fusing all our models. We compare
our result against those of other teams attending this challenge
in Table VII. Our SIAT_MMLAB team obtained the perfor-
mance of 91.6% top1 accuracy which secures the 1st place
at this challenge. This excellent result strongly demonstrates
the effectiveness of our proposed solution for large-scale
scene recognition. Furthermore, we obtain an improvement
of 0.4% top1 accuracy (evaluated on a same database) over
the strong baseline achieved by Google team, who was the
winner of last LSUN challenge in 2015. Our advantages are
built on the proposed multi-resolution structure and knowledge
guided disambiguation strategy, by using a similar Inception
architecture.

F. Generalization Analysis

Extensive experimental results have demonstrated the effec-
tiveness of our proposed method on large-scale datasets,
by eigher training from scratch (using the Places2), or adaption
with fine tuning (on the LSUN). In this subsection, we evaluate

TABLE VIII

COMPARISON OF THE TRANSFERRED REPRESENTATIONS OF OUR MODEL
WITH OTHER METHODS ON THE MIT67 AND SUN397 DATASETS

the generalization ability of our learned models, by directly
applying them on two other databases: the MIT Indoor67 [29]
and SUN397 [25], which have been used as standard bench-
marks for scene recognition for many years. Most recent
methods reported and compared their results on these two
datasets.

The MIT Indoor67 [29] contains 67 indoor-scene categories
and has a total of 15,620 images, with at least 100 images per
category. Following the original evaluation protocol, we use
80 images from each category for training, and another
20 images for testing. The SUN397 [25] has a large number
of scene categories by including 397 categories and totally
108,754 images. Each category has at least 100 images.
We follow the standard evaluation protocol provided in the
original paper by using 50 training and 50 test images for
each category. The partitions are fixed and publicly available
from the original paper [25]. Finally, the average classification
accuracy of ten different tests is reported.

In this experiment, we directly use the trained B2 models
on the datasets of Places365 and Places401 as generic feature
extractors, without fine tuning them on the target dataset.
Specifically, the test images are first resized as 384 × 384.
We then crop image regions of different scales (384 × 384,
346 × 346, and 336 × 336) from the input images. After
this, these image regions are resized as 336 × 336 and fed
into our pre-trained CNNs for feature extraction. We utilize
the activation of global pooling as global representation.
These representations of different regions are averaged and
normalized with �2-norm, which is used as final representation
of the input image. For classifier, we use the linear SVM with
LIBSVM implementation [59].

The experimental results are summarized in Table VIII.
We compare the transfered representations of our model
trained on the Places401 and Places365 datasets against other
deep models (e.g., VGGNet [38] and GoogLeNet [39]) trained
on various datasets (e.g., the Places or ImageNet). As shown
in Table VIII, our transferred model achieves best performance
among all methods, demonstrating that our method generalizes
better than the others. To the best of our knowledge, the per-
formance of 86.7% on the MIT Indoor67 and 72.0% on the
SUN397 are the best results on both datasets, which advance



2066 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 4, APRIL 2017

Fig. 6. Examples of images that our method fail to predict the correct labels within 5 guesses. Top rows: we show 16 failure cases (under top5 evaluation)
on the validation set of the Places401 dataset. The predicted labels (in green) are sorted according to their confidence score and the correct label is labeled in
red. Bottom rows: we give 16 examples that our method fail to predict the correct labels (under top1 evaluation) on the validation set of the LSUN dataset.
The predicted label is marked with green color, while the ground truth is with red color.

the state of the art substantially. We believe that our excellent
performance is valuable to scene recognition community, and
future large-scale recognition algorithm can be built on our
pre-trained models.

G. Failure Case Analysis

Finally, we present a number of failure examples by our
method from the datasets of Places401 and LSUN. These
examples are illustrated in Figure 6. From these examples,
we notice that some scene classes are easily confused with
others. In the Places401 database, the categories of super-
market, pet-store, toyshop look very similar from outdoor
appearance. The classes of downtown, building, and skyscraper
may co-occur in many images. Thus, scene image often
contains complicated visual content which is difficult to be
described clearly by a single category label, and multi-label
classification can be applied to ambiguous categories. For
the dataset of LSUN, the classes of bridge and tower are
highly ambiguous in some cases. Similarly, the category of
conference room is sometimes confused with the classroom
category, due to their closed spatial layout and common objects
contained. Overall, from these failure cases, we can see that
scene recognition is still a challenging problem, and label
ambiguity is a crucial issue in large-scale scene recognition.
Meanwhile, scene recognition sometimes is essentially a kind

of multi-label classification problem and in the future we may
consider multi-label classification framework [60], [61] for
scene recognition.

VI. CONCLUSIONS

In this paper we have studied the problem of scene recog-
nition on large-scale datasets such as the Places, Places2, and
LSUN. Large-scale scene recognition suffers from two major
problems: visual inconsistence (large intra-class variation) and
label ambiguity (small inter-class variation). We developed
powerful multi-resolution knowledge guided disambiguation
framework that effectively tackle these two crucial issues.
We introduced multi-resolution CNNs which are able to
capture visual information from different scales. Further-
more, we proposed two knowledge guided disambiguation
approaches to exploit extra knowledge, which guide CNNs
training toward a better optimization, with improved general-
ization ability.

We conducted extensive experiments on three large-scale
scene databases: the Places2, Places, and LSUN, and directly
transferred our learned representation to two widely-used
standard scene benchmarks: the MIT Indoor67 and SUN397.
Our method achieved superior performance on all five bench-
marks, advancing the state-of-the-art results substantially.
These results convincingly demonstrate the effectiveness of
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our method. Importantly, our method attended two most
domain-influential challenges for large-scale scene recogni-
tion. We achieved the second place at the Places2 challenge
in ILSVRC 2015, and the first place at the LSUN challenge
in CVPR 2016. These impressive results further confirm the
strong capability of our method.
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