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Abstract

Visual features are of vital importance for human action
understanding in videos. This paper presents a new video
representation, called trajectory-pooled deep-convolutional
descriptor (TDD), which shares the merits of both hand-
crafted features [31] and deep-learned features [24].
Specifically, we utilize deep architectures to learn discrimi-
native convolutional feature maps, and conduct trajectory-
constrained pooling to aggregate these convolutional fea-
tures into effective descriptors. To enhance the robustness
of TDDs, we design two normalization methods to trans-
form convolutional feature maps, namely spatiotemporal
normalization and channel normalization. The advantages
of our features come from (i) TDDs are automatically
learned and contain high discriminative capacity compared
with those hand-crafted features; (ii) TDDs take account
of the intrinsic characteristics of temporal dimension and
introduce the strategies of trajectory-constrained sampling
and pooling for aggregating deep-learned features. We
conduct experiments on two challenging datasets: HMD-
B51 and UCF101. Experimental results show that TDDs
outperform previous hand-crafted features [31] and deep-
learned features [24]. Our method also achieves superior
performance to the state of the art on these datasets 1.

1. Introduction

Human action recognition [1, 24, 31, 35, 36] in videos
attracts increasing research interests in computer vision
community due to its potential applications in video surveil-
lance, human computer interaction, and video content
analysis. However, action recognition remains as a diffi-
cult problem when focusing on realistic datasets collected
from movies [17], web videos [15, 26], and TV shows
[20]. There are large intra-class variations in the same
action class, which may be caused by background clutter,

1The TDD code and learned two-stream ConvNet models are available
at https://wanglimin.github.io/tdd/index.html
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Figure 1. There are mainly two types of features in action
recognition: hand-crafted features and deep-learned features. For
hand-crafted features, improved trajectories [31] combined with
Fisher vector are most successful. For deep-learned features,
Convolutional Networks (ConvNets) [18] are popular deep archi-
tectures, which contain a sequence of convolutional and pooling
layers. They aims to automatically learn features with a deep
discriminatively trained neural network.

viewpoint change, and various motion speeds and styles.
Meanwhile, the high dimension and low resolution of
video further increases the difficulty to design efficient and
robust recognition method. Visual representations from
action videos are crucial for dealing with these issues and
designing effective recognition systems. Currently, there
are mainly two types of video features available for action
recognition, as illustrated in Figure 1.

The first type of representations are the hand-crafted
local features, and typical local features include Space
Time Interest Points [16], Cuboids [7], Dense Trajectories
[30], and Improved Trajectories [31]. Calculation of these
local features can be usually decomposed into two phrases:
detector, which aims to discover the salient and informative
regions for action understanding, and descriptor, whose
goal is to describe the visual patterns of extracted regions.
Among these local features, improved trajectories with
rich descriptors of HOG, HOF, MBH have shown to
be successful on a number of challenging datasets (e.g.
HMDB51 [15], UCF101 [26]) and contests (e.g. THUMOS
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[11]). Improved trajectories include several important in-
gredients in their extraction process. Firstly, these extracted
trajectories are mainly located at regions with high motion
salience, which contain rich and discriminative information
for action recognition. Secondly, these local descriptors of
the corresponding regions in several successive frames, are
aligned and pooled along the trajectories. This trajectory-
constrained sampling strategy also takes account of the
temporal continuity of human action, and is effective
to deal with the variations of motion speed. However,
these hand-crafted descriptors are not optimized for visual
representation and may lack discriminative capacity for
action recognition.

The second type of representations are the deep-learned
features, and typical methods include Convolutional RBMs
[29], 3D ConvNets [9], Deep ConvNets [12], and Two-
Stream ConvNets [24]. These deep learning methods aim
to automatically learn the semantic representation from
raw video by using a deep neural network discriminatively
trained from a large number of labeled data. Two-
Stream ConvNets [24] are probably the most successful
architecture at present, and they match the state-of-the-art
performance of improved trajectories [31, 32] on UCF101
and HMDB51. They are composed of two neural networks,
namely spatial nets and temporal nets. Spatial nets mainly
capture the discriminative appearance features for action
understanding, while temporal nets aim to learn the effec-
tive motion features. However, unlike image classification
tasks [14], these deep learning based methods fail to
outperform previous hand-crafted features. One problem of
deep learning methods is that they require a large number of
labeled videos for training, while most available datasets are
relatively small. Meanwhile, most of current deep learning
based action recognition methods largely ignore the intrin-
sic difference between temporal domain and spatial domain,
and just treat temporal dimension as feature channels when
adapting the architectures of ConvNets to model videos.

Motivated by the above analysis, this paper proposes a
new kind of video feature, called trajectory-pooled deep-
convolutional descriptor (TDD). The design of TDD aims
to combine the benefits of both hand-crafted and deep-
learned features. To achieve this goal, our approach
integrates the key factors from two successful video rep-
resentations, namely improved trajectories [31] and two-
stream ConvNets [24]. We utilize deep architecture to learn
multi-scale convolutional feature maps, and introduce the
strategies of trajectory-constrained sampling and pooling to
encode deep features into effective descriptors.

Specifically, we first train two-stream ConvNets on a
relatively large dataset, while more labeled action videos
will make ConvNet training more stable and robust. Then,
we treat the learned two-stream ConvNets as generic feature
extractors, and use them to obtain multi-scale convolutional

feature maps for each video. Meanwhile, we detect a
set of point trajectories with the method of improved
trajectories. Based on convolutional feature maps and
improved trajectories, we pool the local ConvNet responses
over the spatiotemporal tubes centered at the trajectories,
where the resulting descriptor is called TDD. Finally, we
choose Fisher vector representation to aggregate these local
TDDs over the whole video into a global super vector,
and use linear SVM as the classifier to perform action
recognition. We conduct experiments on two public action
datasets: the HMDB51 dataset [15] and the UCF101 dataset
[26]. We show that our TDDs obtain the state-of-the-art
performance for action recognition on these challenging
datasets. Meanwhile, our results demonstrate that our
TDDs are complementary to those hand-crafted features
(HOG, HOF, and MBH) and the fusion of them is able to
further boost the recognition performance.

2. Related Works
Hand-crafted features. Local features [7, 16, 33, 39]

have become popular and effective representations in action
recognition, as these local features do not require algo-
rithms to detect human body and are robust to background
clutter, illumination changes, and video noise. Space Time
Interest Points [16] proposed Harris3D detector to extract
informative regions, while Cuboid [7] detector relied on
temporal Gabor filters. Willems et al. [39] proposed a
Hessian detector, which is a spatio-temporal extension of
Hessian saliency measure used for blob detection in images.
Meanwhile several local descriptors have been proposed to
represent the 3D volumes extracted around these interest
points, such as Histogram of Gradient (HOG), Histogram
of Optical Flow (HOF) [17], 3D Histogram of Gradient
(HOG3D) [13], and Extended SURF (ESURF) [39]. Recent
works made use of point trajectories [30, 31] to extract
and align 3D volumes, and resorted to more rich low level
descriptors for constructing effective video representations,
including HOG, HOF, and Motion Boundary Histogram
(MBH).

One limitation of these local features is that they lack
semantics and discriminative capacity. To overcome this is-
sue, several mid-level and high-level video representations
have been proposed such as Action Bank [22], Dynamic-
Poselets [37], Motionlets [35], Motion Atoms and Phrases
[34], and Actons [42]. They usually resorted to some
heuristic mining methods to select discriminative visual el-
ements as feature units. Instead, this paper takes a different
view of this problem and replace these local hand-crafted
descriptors with deep-learned representations. Our deep
representations deliver high level semantic information, and
are learned automatically from training data without using
these heuristic rules.

Deep-learned features. Deep learning techniques have
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Figure 2. Pipeline of TDD. The whole process of extracting TDD is composed of three steps: (i) extracting trajectories, (ii) extracting multi-
scale convolutional feature maps, and (iii) calculating TDD. We effectively exploit two available state-of-the-art video representations,
namely improved trajectories and two-stream ConvNets. Grounded on them, we conduct trajectory-constrained sampling and pooling over
convolutional feature maps to obtain trajectory-pooled deep convolutional descriptors.

achieved great success in image based tasks [14, 25, 28, 41]
and there have been a number of attempts to develop
deep architectures for video action recognition [9, 12, 24,
29]. Taylor et al. [29] used Gated Restricted Boltzmann
Machines (GRBMs) to learn the motion features in an
unsupervised manner and then resorted to convolutional
learning to fine tune the parameters. Ji et al. [9] extended
2D ConvNet to video domain for action recognition on
relatively small datasets, and recently Karpathy et al. [12]
tested ConvNets with deep structures on a large dataset,
called Sports-1M. However, these deep models achieved
lower performance compared with shallow hand-crafted
representation [31], which might be ascribed to two facts:
firstly, available action datasets are relatively small for
deep learning; secondly, learning complex motion patterns
is more challenging. Simonyan et al. [24] designed
two-stream ConvNets containing spatial and temporal net
by exploiting large ImageNet dataset for pre-training and
explicitly calculating optical flow for capturing motion
information, and finally it matched the state-of-the-art
performance.

However, these deep models lacked considerations of
temporal characteristics of video data and relied on large
training datasets. We incorporate video temporal char-
acteristics into deep architectures by using strategy of
trajectory-constrained sampling and pooling, and propose
a new descriptor. Meanwhile, our descriptors can be easily
adapted to the datasets of smaller size.

3. Improved Trajectories Revisited

As shown in Figure 2, our proposed representation
(TDD) is based on low level trajectory extraction and we

choose improved trajectories [31]. In this section, we briefly
review the extraction process of improved trajectories. It is
worth noting that our TDD is independent of the method
of extracting trajectories, and we use improved trajectories
due to its good performance.

Improved trajectories are extended from dense trajecto-
ries [30]. To compute dense trajectories, the first step is to
densely sample a set of points on 8 spatial scales on a grid
with step size of 5 pixels. Points in homogeneous areas are
eliminated by setting a threshold for the smaller eigenvalue
of their autocorrelation matrices. Then these sampled points
are tracked by media filtering of dense flow field.

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M∗ ωt)|(xt,yt)
, (1)

where M is the median filter kernel, ∗ is convolutional
operation, ωt = (ut, vt) is the dense optical flow field of the
tth frame, and (xt, yt) is the rounded position of (xt, yt).
To avoid the drifting problem of tracking, the maximum
length of trajectory is set as 15-frame. Finally, those static
trajectories are removed as they lack motion information,
and other trajectories with suddenly large displacement are
also ignored, since they are obviously incorrect due to
inaccurate optical flow.

Improved trajectories boost the recognition performance
of dense trajectories by taking camera motion into account.
It assumes that the background motion of two consecutive
frames can be characterized by a homography matrix. To
estimate the homography matrix, the first step is to find
the correspondence between two consecutive frames. They
resort to SURF [2] feature matching and optical flow
based matching, as these two kinds of matching scheme
are complementary to each other. Then, they use the



RANSAC [8] algorithm to estimate homography matrix.
Based on the homography, they rectify the frame image to
remove the camera motion and re-calculate the optical flow,
called warped flow. Warped flow brings advantages to the
descriptors calculated from optical flows, in particular for
HOF, and trajectories corresponding to camera motion can
be removed too.

We adopt improved trajectories for the task of TDD
extraction, but make a modification. Unlike dense trajec-
tories or improved trajectories, we only track points on its
original spatial scale, and extract multi-scale TDDs around
the extracted trajectories (see Section 4). We observe that
tracking on a single scale is fast for implementation. In
summary, given a video V , we obtain a set of trajectories

T(V ) = {T1, T2, · · · , TK}, (2)

where K is the number of trajectories, and Tk denotes the
kth trajectory in the original spatial scale:

Tk = {(xk
1 , y

k
1 , z

k
1 ), (x

k
2 , y

k
2 , z

k
2 ), · · · , (xk

P , y
k
P , z

k
P )}, (3)

where (xk
p, y

k
p , z

k
p ) is the pixel position of the pth point in

trajectory Tk, and P is the length of trajectory (P = 15).
These trajectories will be used for trajectory-constrained
sampling and pooling in the process of TDD extraction, as
described in the next section.

4. Deep Convolutional Descriptors
In this section, we describe a new video representation,

called trajectory-pooled deep-convolutional descriptor (T-
DD), which shares the benefits of both hand-crafted and
deep-learned features. We first introduce the architectures
of convolutional networks (ConvNets) we used. Then, we
show how to adapt the ConvNets trained on large datasets
to extract multi-scale convolutional feature maps. Finally,
based on improved trajectories and convolutional feature
maps, we describe the details of how to calculate TDDs.

4.1. Convolutional networks

Our TDD starts with designing deep ConvNets for
extracting convolutional feature maps. In principle, any
kind of ConvNet architecture can be adopted for TDD
extraction. In our implementation, we choose the two-
stream ConvNets[24] due to their good performance on the
datasets of UCF101 and HMDB51.

The two-stream ConvNets contain two separate Con-
vNets, namely spatial nets and temporal nets. Spatial nets
are designed for capturing static appearance cues, which
are trained on single frame images (224 × 224 × 3),
while temporal nets aim to describe the dynamic motion
information, whose input are volumes of stacking optical
flow fields (224 × 224 × 2F , F is the number of stacking
flows). Meanwhile, decoupling the spatial and temporal

nets also allows to exploit the available images by pre-
training spatial nets on the ImageNet challenge dataset [6],
and explicitly handle motion information with optical flow
algorithms for temporal nets

The details about ConvNets are shown in Table 1. This
ConvNet architecture is original from the Clarifai networks
[41] and adapted to the task of action recognition with less
filters in conv4 layer and lower-dimensional full7 layer. But
we make a small modification. We use the same network
architecture for both spatial and temporal net in addition to
the input data layer, while the original two-stream ConvNets
[24] ignore the second local response normalized (LRN)
layer in the temporal net due to memory consumption
problem. The implementation and training details can be
found in Section 5.

4.2. Convolutional feature maps

Once the training of two-stream ConvNets is complete,
we treat them as generic feature extractors to obtain the
convolutional feature maps of videos. In general, for each
video, we obtain these feature maps of spatial and temporal
net in a frame-by-frame and volume-by-volume manner,
respectively. In order to make the feature maps with equal
temporal duration with input video, we pad the optical flow
fields at the beginning with F − 1 copies of the optical flow
field from the first frame, where F is the number of stacking
optical flow.

For each frame or volume, we take it as the input for spa-
tial or temporal nets. We make two modifications about the
spatial and temporal nets. The first one is that we remove
the layers after the target layer for feature extraction. For
example, to extract feature maps of conv4, we will remove
the layers from conv5 to full8. Therefore, the output of
spatial and temporal net will be the convolutional feature
maps, which will be used for extracting TDD in the next
subsection.

The second modification is that before each convolu-
tional or pooling layer, with kernel size k, we conduct
zero padding of the layer’s input with size ⌊k/2⌋. This
padding allows the input and output maps of these layers
to have the same spatial extent. With this padding, it will
be straightforward to map the positions of trajectory points
in video to the coordinates of convolutional feature maps.
A trajectory point with video coordinates (xp, yp, zp) in
Equation (3) will be centered on (r × xp, r × yp, zp) in
convolutional map, where r is map size ratio with respective
to input size, as listed in Table 1.

ConvNets are bottom-up architectures with a sequence
of alternating convolutional and pooling layers. Different
layers of ConvNets have various receptive fields as shown
in Table 1, ranging from 7 × 7 to 171 × 171. As described
in paper [41], these different layers capture patterns from
simple visual elements such as edges, to complex visual



Layer conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 full6 full7 full8
size 7× 7 3× 3 5× 5 3× 3 3× 3 3× 3 3× 3 3× 3 - - -

stride 2 2 2 2 1 1 1 2 - - -
channel 96 96 256 256 512 512 512 512 4096 2048 101

map size ratio 1/2 1/4 1/8 1/16 1/16 1/16 1/16 1/32 - - -
receptive field 7× 7 11× 11 27× 27 43× 43 75× 75 107× 107 139× 139 171× 171 - - -

Table 1. ConvNet Architectures. We use similar architectures to two-stream ConvNets [24], which are adapted to the task of action
recognition from the Clarifai networks [41], with less filters in conv4 layer (512 vs. 1024) and lower-dimensional full7 layer (2048 vs.
4096). For layers of conv1 and conv2, local response normalized (LRN) is applied with parameters settings: n = 5, α = 5 × 10−4, β =
0.75. The layers of full6 and full7 are regularised by using dropout and the full8 layer acts as a soft-max classifier. The activation function
for all weight layers is the rectification linear unit (RELU). The size ratios of feature maps with respect to input data range from 1/2 to
1/32, and the feature receptive fields vary from 7× 7 to 171× 171, for different convolutional and pooling layers (conv1 to pool5).

concepts such as parts and objects. The higher layers
have larger receptive fields and obtain more invariant and
discriminative features. Intuitively, these different layers
describe the visual content at different levels, each of which
is complementary to each other for the task of recognition.
We will exploit this complimentary property of different
layers during the extraction of TDD. Given a video V , we
obtain a set of convolutional feature maps:

C(V ) = {Cs
1 , C

s
2 , · · · , Cs

M , Ct
1, C

t
2, · · · , Ct

M}, (4)

where Cs
m ∈ RHm×Wm×L×Nm is the mth feature map

of spatial net, Hm is its height, Wm is its width, L is the
video duration, and Nm is the number of channels. Ct

m ∈
RHm×Wm×L×Nm is the mth feature map of temporal net,
M is the number of layers for extracting TDD.

4.3. Trajectorypooled descriptors

We will describe the method for extracting trajectory-
pooled deep-convolutional descriptors (TDDs) from a set
of improved trajectories T(V ) and convolutional feature
maps C(V ) for a given video V . In essence, TDD
is a kind of local trajectory-aligned descriptor computed
in a 3D volume around the trajectory. TDDs from the
spatial and temporal nets capture the appearance and motion
information of this 3D volume, respectively. The size of
the volume is N × N pixels and P frames, where N is
the receptive field size and P is the trajectory length. The
extraction of TDD is composed of two steps: feature map
normalization and trajectory pooling.

Normalization proves to be an effective strategy in de-
signing features partially because it can reduce the influence
of illumination. It has been widely exploited in local
descriptors such as SIFT [19], HOG [5], and HOF [17], and
in deep learning such as local response normalization [14].
We apply the normalization strategy to the convolutional
feature maps of two-stream ConvNets to suppress the
activation burstiness of some neurons. We design two kinds
of normalization methods:

• Spatiotemporal Normalization. For spatiotemporal
normalization, we normalize the feature map for each

channel independently across the video spatiotemporal
extent. Given a feature map C ∈ RH×W×L×N of
Equation (4), we normalize the convolutional feature
value as follows:

C̃st(x, y, z, n) = C(x, y, z, n)/maxVn
st, (5)

where maxVn
st is the maximum value of nth feature

maps over the whole video spatiotemporal exten-
t, which means maxVn

st = maxx,y,z C(x, y, z, n).
The spatiotemporal normalization method ensures that
each convolutional feature channel ranges in the same
interval, and thus contributes equally to final TDD
recognition performance.

• Channel Normalization. For channel normalization,
we normalize the feature map for each pixel indepen-
dently across the feature channels. We conduct chan-
nel normalization for feature map C ∈ RH×W×L×N

as follows:

C̃ch(x, y, z, n) = C(x, y, z, n)/maxVx,y,z
ch , (6)

where maxVx,y,z
ch is the maximum value of different

feature channels at pixel position (x, y, z), that is
maxVx,y,z

ch = maxn C(x, y, z, n). This channel
normalization is able to make sure that the feature
value of each pixel range in the same interval, and
let each pixel make the equal contribution in the final
representation.

After the step of feature normalization, we will extract
TDDs based on trajectories and normalized convolutional
feature maps by using trajectory pooling. Specifically, giv-
en a trajectory Tk and a normalized feature map C̃a

m, which
is the mth-layer feature map after either spatiotemporal
normalization or channel normalization from spatial net or
temporal net (a ∈ {s, t}), we conduct sum-pooling of the
normalized feature maps over the 3D volume centered at the
trajectory as follows:

D(Tk, C̃
a
m) =

P∑
p=1

C̃a
m((rm × xk

p), (rm × ykp), z
k
p ), (7)



where (xk
p, y

k
p , z

k
p ) is the pth point position of video coor-

dinates in trajectory Tk, rm is the mth-layer map size ratio
with respective to input size as listed in Table 1, (·) is the
rounding operation. D(Tk, C̃

a
m) is called trajectory-pooled

deep convolutional descriptor, and is a new kind of feature
combing the merits of both improved dense trajectories and
two-stream ConvNets.

Multi-scale TDD extension. The above description on
TDD extraction is about the single scale, we will present the
multi-scale extension of TDD. For improved trajectory, it
samples points and tracks them on multi-scale videos, while
fixes the spatial extent of HOG, HOF, and MBH descriptors
as 32 × 32. The original method needs to conduct point
tracking and descriptor calculation in multi-scale settings.
In our implementation, we try a more efficient multi-
scale strategy. Specifically, we calculate optical flow and
track point in a single scale. Then we construct multi-
scale pyramid representations of video frames and optical
flow fields. These pyramid representations are fed into
the two stream ConvNets and transformed into multi-scale
convolutional feature maps as shown in Figure 2. Based on
multi-scale convolutional maps and single-scale improved
trajectories, we are able to compute multi-scale TDDs
efficiently, by applying trajectory pooling to multi-scale
convolutional feature maps as described above. The only
modification to different scales is to replace feature map
size ratio rm in Equation (7) with rm × s, where s is
the scale of current feature map. In practice, compared
with improved trajectories, we use less scales with s =
1/2, 1/

√
2, 1,

√
2, 2.

5. Experiments

In this section, we first present the details of datasets and
their evaluation scheme. Then, we describe the details of
our method. Finally, we give the experimental results and
compare TDD with the state of the art.

5.1. Datasets

In order to verify the effectiveness of TDDs, we conduct
experiments on two public large datasets, namely HMD-
B51 [15] and UCF101 [26]. The HMDB51 dataset is a
large collection of realistic videos from various sources,
including movies and web videos. The dataset is composed
of 6, 766 video clips from 51 action categories, with each
category containing at least 100 clips. Our experiments
follow the original evaluation scheme using three different
training/testing splits. In each split, each action class has
70 clips for training and 30 clips for testing. The average
accuracy over these three splits is used to measure the final
performance.

The UCF101 dataset contains 101 action classes and
there are at least 100 video clips for each class. The whole

dataset contains 13, 320 video clips, which are divided
into 25 groups for each action category. We follow the
evaluation scheme of the THUMOS13 challenge [11] and
adopt the three training/testing splits for evaluation. As
UCF101 is larger than HMDB51, we use the UCF101
dataset to train two-stream ConvNets initially, and transfer
this learned model for TDD extraction on the HMDB51
dataset.

5.2. Implementation details

Two-stream ConvNets training. Training deep Con-
vNets is more challenging for action recognition as action
is more complex than object and the available dataset
is extremely small compared with the ImageNet dataset
[6]. We choose the training dataset of UCF101 split1 for
learning two-stream ConvNets as it is probably the largest
public available dataset. We use the Caffe toolbox [10]
for ConvNet implementation. The network weights are
learnt using the mini-batch (set to 256) stochastic gradient
descent with momentum (set to 0.9). For spatial net, we
first resize the frame to make the smaller side as 256, and
then randomly crop a 224 × 224 region from the frame. It
then undergoes random horizontal flipping. We pre-train
the network with the public available model [4]. Finally,
we fine tune the model parameters on the UCF101 dataset,
where the learning rate is set as 10−2, decreased to 10−3

after 14K iterations, and training stopped at 20K iterations.
For temporal net, its input is 3D volume of stacking

optical flows fields. We choose the TVL1 optical flow
algorithm [40] and use the OpenCV implementation, due
to its balance between accuracy and efficiency. For fast
computation, we discretize the values of optical flow fields
into integers and set their range as 0-255 just like images.
Specifically, we choose to stack 10 frames of optical
flow fields to keep a balance between performance and
efficiency. We train temporal net on UCF101 from scratch.
As the dataset is relatively small, we use high dropout ratio
to improve the generalization capacity of trained model. We
set dropout 0.9 for full6 layer and dropout 0.8 for full7 layer.
The training procedure of temporal net is similar to spatial
net and a 224× 224× 20 sub-volume is randomly cropped
and flipped from training video. The learning rate is initially
set as 10−2 and decreases to 10−3 after 50K iterations. It
is then reduced to 10−4 after 70K iterations and training is
stopped at 90K iterations.

Results of two-stream ConvNets. To evaluate the
trained model, as in [24], we select 25 frames for each
video clip and obtain 10 crops for each frame. The final
recognition result is the average across these crops and
frames. We obtain 71.2% recognition accuracy with spatial
net and 80.1% with temporal net. The performance of
our implemented two-stream ConvNets is 84.7%, which
is similar to that of two-stream ConvNets [24] (85.6%).
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Figure 3. Exploration of different settings in TDD on the HMDB51
dataset. Left: Performance trend with varying PCA reduced di-
mension. Right: Comparison of different normalization methods.
“Combine” means the fusion of spatiotemporal normalization and
channel normalization.

However, obtaining ConvNets with high performance is
not the final goal of this paper, and we aim to verify the
effectiveness of TDDs.

Feature encoding. We choose Fisher vector [23] to
encode the TDDs of a video clip into high dimensional
representation as its effectiveness for action recognition has
been verified in previous works [38, 27], and then use a
linear SVM as the classifer (C = 100). In order to train
GMMs, we first de-correlate TDD with PCA and reduce its
dimension to D. Then, we train a GMM with K (K = 256)
mixtures, and finally the video is represented with a 2KD-
dimensional vector.

5.3. Exploration experiments

Dimension reduction. To specify the PCA dimension
of TDD for GMM training and Fisher vector encoding, we
first explore different dimensions reduced by PCA on the
HMDB51 dataset, with conv4 descriptors from spatial net.
In this exploration experiment, we use the spatiotemporal
normalization method for TDD and the results are shown in
the left of Figure 3. We vary the dimension from 32 to 256
and the results show that dimension 64 achieves the high
performance, and higher dimension may cause performance
degradation. Thus, we fix the dimension as 64 for TDDs in
the remainder of this section.

Normalization method. Another important component
in TDD design is the normalization method and we have
presented two normalization methods: spatiotemporal nor-
malization (ST. Norm.) and channel normalization (Cha.
Norm.) in Section 4.3 . We conduct experiments to
investigate the effectiveness of normalization methods by
using conv4 descriptors from spatial net on the HMDB51
dataset, and the results are shown in the right of Figure
3. We see that normalization is important for improving
performance and spatiotemporal normalization is the best
choice. We also explore the complementary property
of these two normalization methods by fusing the Fisher
vectors of them, and observe that it can further improve the
performance. Therefore, in the remainder of this section,
we will use the combined representation obtained from

Algorithm HMDB51 UCF101
HOG [31, 32] 40.2% 72.4%
HOF [31, 32] 48.9% 76.0%
MBH [31, 32] 52.1% 80.8%
HOF+MBH [31, 32] 54.7% 82.2%
iDT [31, 32] 57.2% 84.7%
Spatial net [24] 40.5% 73.0%
Temporal net [24] 54.6% 83.7%
Two-stream ConvNets [24] 59.4% 88.0%
Spatial conv4 48.5% 81.9%
Spatial conv5 47.2% 80.9%
Spatial conv4 and conv5 50.0% 82.8%
Temporal conv3 54.5% 81.7%
Temporal conv4 51.2% 80.1%
Temporal conv3 and conv4 54.9% 82.2%
TDD 63.2% 90.3%
TDD and iDT 65.9% 91.5%

Table 3. Performance of TDD on the HMDB51 dataset and
UCF101 dataset. We compare our proposed TDD with iDT
features [31] and two-stream ConvNets [24]. We also explore the
complementary properties TDD features and iDT features. The
combination of them can further boost the performance.

these two normalization methods for TDDs.
Different layers. Finally we investigate the performance

of TDDs from different layers of spatial and temporal nets
on the HMDB51 dataset, and the results are summarized in
Table 2. For layers of conv5, conv4, and conv3, we use the
outputs of RELU activations, and for layers of conv2 and
conv1, we choose the outputs of max pooling layers after
convolution operations. We see that descriptors of layers
conv4 and conv5 obtain highest recognition performance
for spatial net, while the ones of layers conv3 and conv4 are
top performers for temporal net. Therefore, in the following
evaluation of TDD, we choose the descriptors from conv4
and conv5 layers for spatial nets, and conv3 and conv4
layers for temporal nets.

5.4. Evaluation of TDDs

In this section, we evaluate the performance of our
proposed TDDs on the HMDB51 and UCF101 dataset, and
the experimental results are summarized in Table 3. We first
compare the performance of TDDs with that of improved
trajectories. The convolutional descriptors of spatial net
are much better than HOG descriptors, which indicates that
deep-learned features contains more discriminative capacity
than hand-crafted features. For convolutional descriptors
of temporal net, they are better than or comparable to the
descriptors of HOF and MBH, but the improvement is not
so evident as spatial convolutional descriptors. The reason
may be that HOF and MBH calculation is based on warped
optical flow instead of original optical flow, which has been
proved to be pretty effective for HOF descriptor [31]. We



Spatial ConvNets Temporal ConvNets
Convolutional layer conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5
Recognition accuracy 24.1% 33.9% 41.9% 48.5% 47.2% 39.2% 50.7% 54.5% 51.2% 46.1%

Table 2. The performance of different layers of spatial nets and temporal nets on the HMDB51 dataset.

(a) RGB (b) Flow-x (c) Flow-y (d) S-conv4 (e) S-conv5 (f) T-conv3 (g) T-conv4

Figure 4. Examples of video frames, optical flow fields, and their corresponding feature maps of spatial nets and temporal nets.

consider using warped flow for TDDs extraction in the
future.

We also compare the performance of TDDs with the
two-stream ConvNets. Although our trained two-stream
ConvNets obtain slightly lower performance than theirs,
we see that our spatial TDDs outperform spatial nets by
a large margin and temporal TDD is comparable to their
temporal net. These results indicate the fact that trajectory-
constrained sampling and pooling is an effective strategy
for improving recognition performance, in particular for
spatial TDDs. We also notice that the combined TDDs from
spatial and temporal nets outperform two-stream ConvNets
by around 4% and 2% on the two datasets, respectively.
We also show some examples of video frames, optical flow
fields, and their corresponding feature maps in Figure 4.
From these examples, we see that the convolutional feature
maps are relatively sparse and exhibit high correlation with
the action areas.

Finally, we explore a practical way to improve the
recognition performance of action recognition system by
combining TDDs with iDTs, using early fusion of Fisher
vector representation. The recognition results are shown
in Table 3, and the fusion of them can further boost the
performance. This further improvement indicates our TDDs
are complementary to those low-level local features.

Computational costs. Compared with iDT, we only
track points on a single scale and extract original flow
instead of warped flow. The ConvNets are implemented by
Cuda and computing is very efficient.

5.5. Comparison to the state of the art

Table 4 compares our recognition results with several
recently published methods on the dataset of HMDB51 and

HMDB51 UCF101
STIP+BoVW [15] 23.0% STIP+BoVW [26] 43.9%
Motionlets [35] 42.1% Deep Net [12] 63.3%
DT+BoVW [30] 46.6% DT+VLAD [3] 79.9%
DT+MVSV [3] 55.9% DT+MVSV [3] 83.5%
iDT+FV [31] 57.2% iDT+FV [32] 85.9%
iDT+HSV [21] 61.1% iDT+HSV [21] 87.9%
Two Stream [24] 59.4% Two Stream [24] 88.0%
TDD+FV 63.2% TDD+FV 90.3%
Our best result 65.9% Our best result 91.5%

Table 4. Comparison of TDD to the state of the art. We separately
present the results of TDDs and our best results obtained with early
fusion of TDDs and iDTs.

UCF101. The performance of TDDs outperforms previous
methods on both datasets. On the HMDB51 dataset, our
best result outperforms other methods by 4.8%, and on the
UCF101 dataset, our best result outperforms by 3.5%. This
superior performance of TDDs indicates the effectiveness
of introducing trajectory-constrained sampling and pooling
into deep-learned features.

6. Conclusions
This paper has proposed an effective video presentation,

called trajectory-pooled deep-convolutional descriptor (T-
DD), which integrates the advantages of hand-crafted and
deep-learned features. Deep architectures are utilized to
learn discriminative convolutional feature maps, and then
the strategies of trajectory-constrained sampling and pool-
ing are adopted to aggregate these convolutional features
into TDDs. Our features achieve superior performance
on two datasets for action recognition, as evidenced by
comparison with the state-of-the-art methods.
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Evaluation of local spatio-temporal features for action recog-
nition. In BMVC, 2009. 2

[34] L. Wang, Y. Qiao, and X. Tang. Mining motion atoms and
phrases for complex action recognition. In ICCV, 2013. 2

[35] L. Wang, Y. Qiao, and X. Tang. Motionlets: Mid-level 3D
parts for human motion recognition. In CVPR, 2013. 1, 2, 8

[36] L. Wang, Y. Qiao, and X. Tang. Latent hierarchical model of
temporal structure for complex activity classification. TIP,
23(2), 2014. 1



[37] L. Wang, Y. Qiao, and X. Tang. Video action detection with
relational dynamic-poselets. In ECCV, 2014. 2

[38] X. Wang, L. Wang, and Y. Qiao. A comparative study
of encoding, pooling and normalization methods for action
recognition. In ACCV, 2012. 7

[39] G. Willems, T. Tuytelaars, and L. J. V. Gool. An efficient
dense and scale-invariant spatio-temporal interest point de-
tector. In ECCV, 2008. 2

[40] C. Zach, T. Pock, and H. Bischof. A duality based approach
for realtime tv-L1 optical flow. In 29th DAGM Symposium
on Pattern Recognition, 2007. 6

[41] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV, 2014. 3, 4, 5

[42] J. Zhu, B. Wang, X. Yang, W. Zhang, and Z. Tu. Action
recognition with actons. In ICCV, 2013. 2


