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Figure 1: Two types of features in action recognition.

•Goal: Design new features sharing merits of both hand-crafted and
deep-learned features for video representation.

•Existing works:
◮ Improved trajectories [1]: (i) Extracting trajectories. (ii) Pooling local features

along trajectories (HOG, HOF, MBH).
◮ Two-stream ConvNets [2]: (i) Stacking frames or optical flow fields. (ii)

Learning features for classification with CNNs.
•Our idea: Trajectory-Pooled Deep-Convolutional Descriptors (TDD):

◮ (i) we exploit deep architectures to learn discriminative convolutional feature maps.
◮ (ii) we perform trajectory-constrained pooling to aggregate these convolutional

feature maps into effective descriptors.
•Advantages:

◮ TDDs are automatically learned and contain high discriminative capacity compared
with those hand-crafted features;

◮ TDDs take account of the intrinsic characteristics of temporal dimension and
introduce the strategies of trajectory-constrained sampling and pooling.

Improved Trajectories Revisited

• Improved trajectories:
◮ Densely sampling a set of points and tracking them by media filtering:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)|(xt,yt)

◮ Camera motion estimation: determining a homography matrix by using SURF
feature matching and optical flow matching.

◮ Camera motion estimation is capable of rectifying the optical flow fileds and
removing the trajectories of background.

• iDTs for TDDs
◮ Given a video V, we obtain a set of trajectories: T(V) = {T1,T2, · · · ,TK}

◮ Tk denotes the kth trajectory in the original spatial scale:

Tk = {(xk
1, yk

1, zk
1), (xk

2, yk
2, zk

2), · · · , (xk
P, yk

P, zk
P)}

◮ where (xk
p, yk

p, zk
p) is the pixel position, and P is the length of trajectory (P = 15).
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Figure 2: TDD extraction pipeline.

Layer conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 full6 full7 full8
size 7 × 7 3 × 3 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 - - -

stride 2 2 2 2 1 1 1 2 - - -
channel 96 96 256 256 512 512 512 512 4096 2048 101

map size ratio 1/2 1/4 1/8 1/16 1/16 1/16 1/16 1/32 - - -
receptive field 7 × 7 11 × 11 27 × 27 43 × 43 75 × 75 107 × 107 139 × 139 171 × 171 - - -

Table 1: ConvNet Architectures.

•Convolutional networks:
◮ We choose the two-stream ConvNets, which is composed of spatial nets and

temporal nets.
◮ Spatial nets capture static appearance cues and are trained on single frame

images (224 × 224 × 3),
◮ Temporal nets describe the dynamic motion information and are trained on the

stacking of optical flow fields (224 × 224 × 20).
•Convolutional feature maps:

◮ We use two-stream ConvNets as generic feature extractors:

C(V) = {Cs
1,Cs

2, · · · ,Cs
M,Ct

1,Ct
2, · · · ,Ct

M},

where Cs
m ∈ RHm×Wm×L×Nm is the mth feature map.

◮ We conduct zero padding of the layer’s input with size ⌊k/2⌋ before each
convolutional or pooling layer, with kernel size k.

◮ A point with video coordinates (xp, yp, zp) will be centered on (r × xp, r × yp, zp) in
convolutional map, where r is map size ratio.

•Trajectory-pooled descriptors:
◮ Two normalization methods:

◮ Spatiotemporal normalization: C̃st(x, y, z, n) = C(x, y, z, n)/maxVn
st.

◮ Channel normalization: C̃ch(x, y, z, n) = C(x, y, z, n)/maxVx,y,z
ch .

◮ Sum pooling along trajectory:

D(Tk, C̃a
m) =

P∑

p=1

C̃a
m((rm × xk

p), (rm × yk
p), zk

p)

◮ Multi-scale TDD extension: we construct multi-scale pyramid representations of
video frames and optical flow fields, which are transformed into multi-scale
convolutional feature maps by ConvNets.

Experimental Results

(a) RGB (b) Flow-x (c) Flow-y (d) S-conv4 (e) S-conv5 (f) T-conv3 (g) T-conv4

Figure 3: Examples of video frames, optical flow fields, and feature maps.
Spatial ConvNets Temporal ConvNets

Convolutional layer conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5
Recognition accuracy 24.1% 33.9% 41.9% 48.5% 47.2% 39.2% 50.7% 54.5% 51.2% 46.1%

Table 2: The performance of different layers of spatial nets and temporal nets.
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Figure 4: Left: Performance trend with varying PCA reduced dimension. Right:
Comparison of different normalization methods.

Algorithm HMDB51 UCF101 Algorithm HMDB51 UCF101
HOG [1] 40.2% 72.4% Spatial conv4 48.5% 81.9%
HOF [1] 48.9% 76.0% Spatial conv5 47.2% 80.9%
MBH [1] 52.1% 80.8% Spatial conv4 and conv5 50.0% 82.8%
HOF+MBH [1] 54.7% 82.2% Temporal conv3 54.5% 81.7%
iDT [1] 57.2% 84.7% Temporal conv4 51.2% 80.1%
Spatial net [2] 40.5% 73.0% Temporal conv3 and conv4 54.9% 82.2%
Temporal net [2] 54.6% 83.7% TDD 63.2% 90.3%
Two-stream ConvNets [2] 59.4% 88.0% TDD and iDT 65.9% 91.5%

Table 3: Comparison of TDD with iDT features [1] and two-stream ConvNets [2].

HMDB51 UCF101
STIP+BoVW 23.0% STIP+BoVW 43.9%
Motionlets 42.1% Deep Net 63.3%
DT+BoVW 46.6% DT+VLAD 79.9%
DT+MVSV 55.9% DT+MVSV 83.5%
iDT+FV 57.2% iDT+FV 85.9%
iDT+HSV 61.1% iDT+HSV 87.9%
Two Stream 59.4% Two Stream 88.0%
TDD+FV 63.2% TDD+FV 90.3%
Our best result 65.9% Our best result 91.5%

Table 4: Comparison of TDDs to the state of the art.
Model and code is available at http://wanglimin.github.io/tdd/index.html
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