



# Introduction

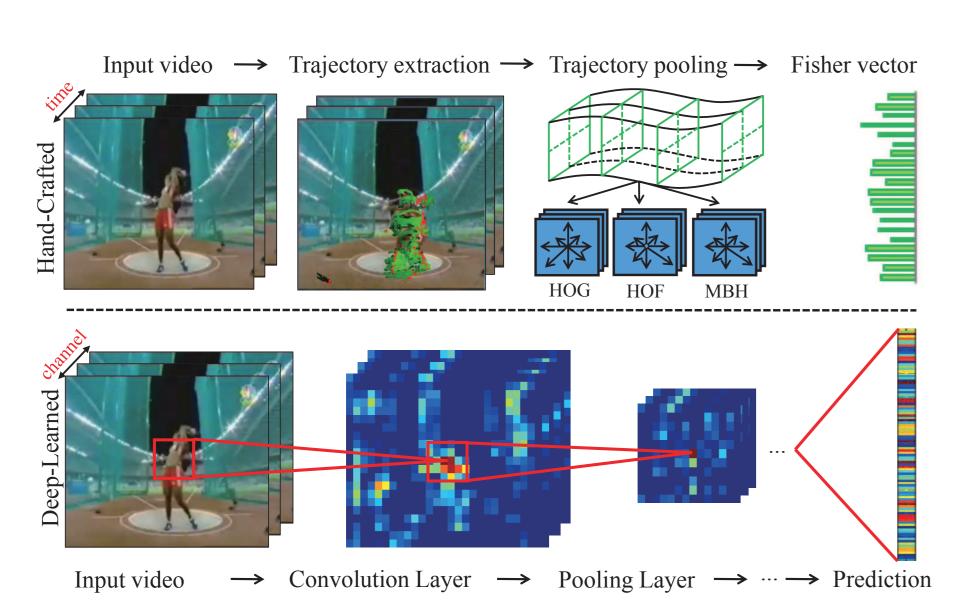


Figure 1: Two types of features in action recognition.

- Goal: Design new features sharing merits of both hand-crafted and *deep-learned* features for video representation.
- Existing works:
- Improved trajectories [1]: (i) Extracting trajectories. (ii) Pooling local features along trajectories (HOG, HOF, MBH).
- Two-stream ConvNets [2]: (i) Stacking frames or optical flow fields. (ii) Learning features for classification with CNNs.
- Our idea: Trajectory-Pooled Deep-Convolutional Descriptors (TDD):
- (i) we exploit deep architectures to learn discriminative convolutional feature maps.
- (ii) we perform trajectory-constrained pooling to aggregate these convolutional feature maps into effective descriptors.

## • Advantages:

- TDDs are automatically learned and contain high discriminative capacity compared with those hand-crafted features;
- TDDs take account of the intrinsic characteristics of temporal dimension and introduce the strategies of trajectory-constrained sampling and pooling.

# Improved Trajectories Revisited

## • Improved trajectories:

Densely sampling a set of points and tracking them by media filtering:

 $P_{t+1} = (x_{t+1}, y_{t+1}) = (x_t, y_t) + (\mathcal{M} * \omega_t)|_{(\overline{x}_t, \overline{y}_t)}$ 

- Camera motion estimation: determining a homography matrix by using SURF feature matching and optical flow matching.
- Camera motion estimation is capable of rectifying the optical flow fileds and removing the trajectories of background.

## • iDTs for TDDs

- Given a video V, we obtain a set of trajectories:  $\mathbb{T}(V) = \{T_1, T_2, \cdots, T_K\}$
- $T_k$  denotes the  $k^{th}$  trajectory in the original spatial scale:

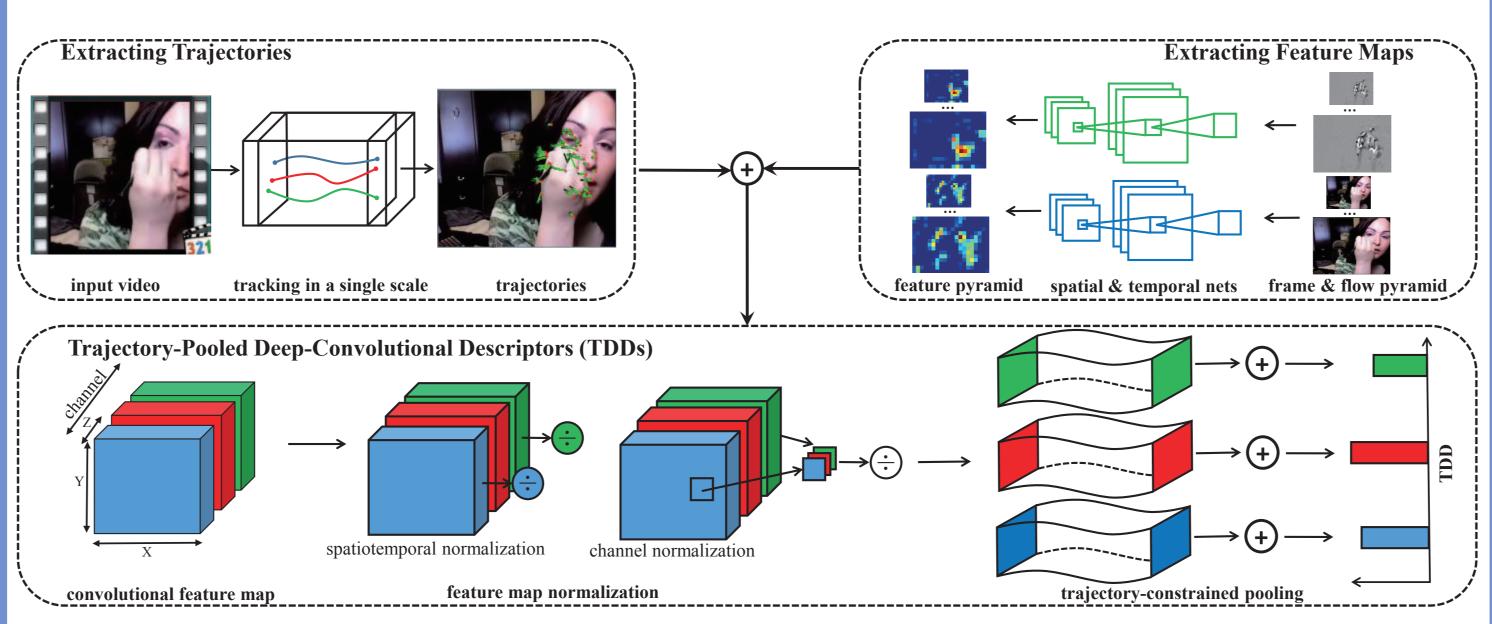
 $T_k = \{ (x_1^k, y_1^k, z_1^k), (x_2^k, y_2^k, z_2^k), \cdots, (x_P^k, y_P^k, z_P^k) \}$ 

where  $(x_p^k, y_p^k, z_p^k)$  is the pixel position, and P is the length of trajectory (P = 15).

# Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors Limin Wang<sup>1,2</sup> Yu Qiao<sup>2</sup> Xiaoou Tang<sup>1,2</sup>

<sup>1</sup>Department of Information Engineering, The Chinese University of Hong Kong <sup>2</sup>Shenzhen Institutes of Advanced Technology, CAS, China

# **Deep Convolutional Descriptors**



### Figure 2: TDD extraction pipeline.

| Layer           | conv1               | pool1                 | conv2          | pool2          | conv3          | conv4                   | conv5        | pool5        | full6 | full7 | full8 |
|-----------------|---------------------|-----------------------|----------------|----------------|----------------|-------------------------|--------------|--------------|-------|-------|-------|
| size            | <b>7</b> × <b>7</b> | 3 × 3                 | 5 × 5          | 3 × 3          | $3 \times 3$   | $3 \times 3$            | $3 \times 3$ | $3 \times 3$ | -     | -     | -     |
| stride          | 2                   | 2                     | 2              | 2              | 1              | 1                       | 1            | 2            | -     | -     | -     |
| channel         | 96                  | 96                    | 256            | 256            | 512            | 512                     | 512          | 512          | 4096  | 2048  | 101   |
| map size ratio  | 1/2                 | 1/4                   | 1/8            | 1/16           | 1/16           | 1/16                    | 1/16         | 1/32         | -     | -     | -     |
| receptive field | <b>7</b> × <b>7</b> | <b>11</b> × <b>11</b> | $27 \times 27$ | $43 \times 43$ | $75 \times 75$ | <b>107</b> × <b>107</b> | 139 × 139    | 171 × 171    | -     | -     | -     |

Table 1: ConvNet Architectures.

### Convolutional networks:

- We choose the two-stream ConvNets, which is composed of spatial nets and temporal nets.
- Spatial nets capture static appearance cues and are trained on single frame images  $(224 \times 224 \times 3)$ ,
- **Temporal nets** describe the dynamic motion information and are trained on the stacking of optical flow fields  $(224 \times 224 \times 20)$ .

### Convolutional feature maps:

We use two-stream ConvNets as generic feature extractors:

 $\mathbb{C}(V) = \{C_1^s, C_2^s, \cdots, C_M^s, C_1^t, C_2^t, \cdots, C_M^t\},\$ 

- where  $C_m^s \in \mathbb{R}^{H_m \times W_m \times L \times N_m}$  is the *m*<sup>th</sup> feature map.
- We conduct zero padding of the layer's input with size |k/2| before each convolutional or pooling layer, with kernel size k.
- A point with video coordinates  $(x_p, y_p, z_p)$  will be centered on  $(r \times x_p, r \times y_p, z_p)$  in convolutional map, where *r* is map size ratio.

### Trajectory-pooled descriptors:

- Two normalization methods: Spatiotemporal normalization:  $\widetilde{C}_{st}(x, y, z, n) = C(x, y, z, n) / \max V_{st}^{n}$ .
- Channel normalization:  $C_{ch}(x, y, z, n) = C(x, y, z, n) / \max V_{ch}^{x, y, z}$ . Sum pooling along trajectory:

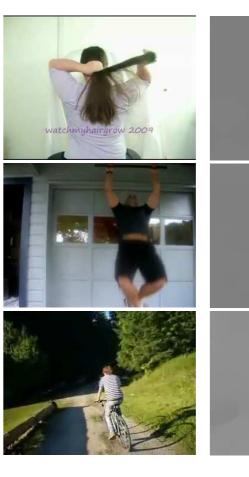
$$D(T_k, \widetilde{C}_m^a) = \sum_{k=1}^{P} \widetilde{C}_m^a(\overline{(r_m)})$$

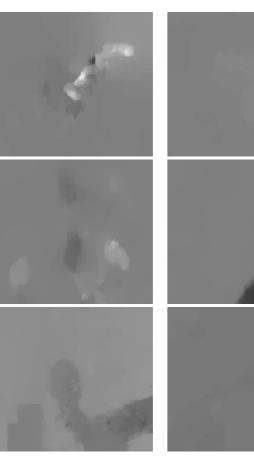
p=1

Multi-scale TDD extension: we construct multi-scale pyramid representations of video frames and optical flow fields, which are transformed into multi-scale convolutional feature maps by ConvNets.

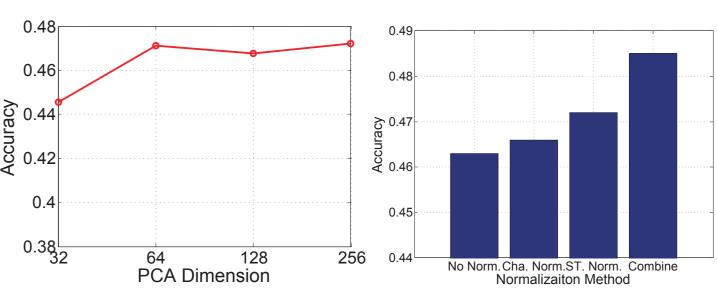
 $(m \times x_p^k), (r_m \times y_p^k), z_p^k)$ 

# **Experimental Results**





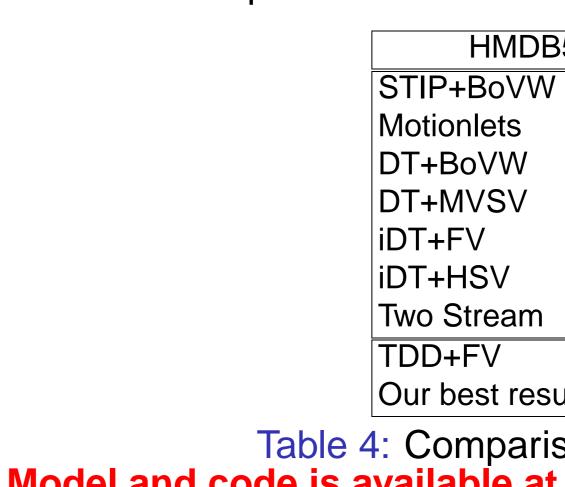
(a) RGB (b) Flow-x (c) Flow-y (d) S-conv4 (e) S-conv5 (f) T-conv3 Figure 3: Examples of video frames, optical flow fields, and feature maps. Temporal ConvNets Spatial ConvNets Convolutional layer conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5 Recognition accuracy 24.1% 33.9% 41.9% 48.5% 47.2% 39.2% 50.7% 54.5% 51.2% 46.1% Table 2: The performance of different layers of spatial nets and temporal nets.



#### Figure 4: Left: Performance trend with varying PCA reduced dimension. Right: Comparison of different normalization methods.

| Algorithm               | HMDB51 | UCF101 | Algorithm                | HMDB51 | UCF101 |
|-------------------------|--------|--------|--------------------------|--------|--------|
| HOG [1]                 | 40.2%  | 72.4%  | Spatial conv4            | 48.5%  | 81.9%  |
| HOF [1]                 | 48.9%  | 76.0%  | Spatial conv5            | 47.2%  | 80.9%  |
| MBH [1]                 | 52.1%  | 80.8%  | Spatial conv4 and conv5  | 50.0%  | 82.8%  |
| HOF+MBH [1]             | 54.7%  | 82.2%  | Temporal conv3           | 54.5%  | 81.7%  |
| iDT [1]                 | 57.2%  | 84.7%  | Temporal conv4           | 51.2%  | 80.1%  |
| Spatial net [2]         | 40.5%  | 73.0%  | Temporal conv3 and conv4 | 54.9%  | 82.2%  |
| Temporal net [2]        | 54.6%  | 83.7%  | TDD                      | 63.2%  | 90.3%  |
| Two-stream ConvNets [2] | 59.4%  | 88.0%  | TDD and iDT              | 65.9%  | 91.5%  |
|                         |        |        |                          | -      |        |

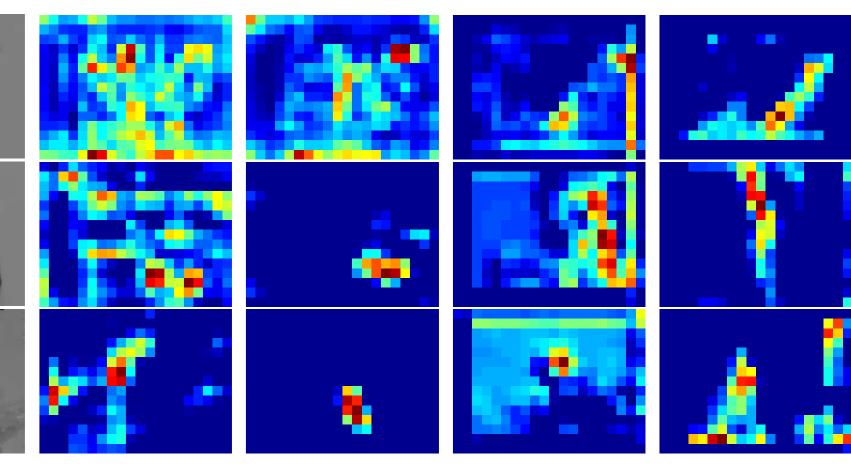
Table 3: Comparison of TDD with iDT features [1] and two-stream ConvNets [2].



# References

1. H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013. 2. K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.





(g) T-conv4

| 351                         | UCF101          |       |  |  |  |
|-----------------------------|-----------------|-------|--|--|--|
| 23.0%                       | STIP+BoVW       | 43.9% |  |  |  |
| 42.1%                       | Deep Net        | 63.3% |  |  |  |
| 46.6%                       | DT+VLAD         | 79.9% |  |  |  |
| 55.9%                       | DT+MVSV         | 83.5% |  |  |  |
| 57.2%                       | iDT+FV          | 85.9% |  |  |  |
| 61.1%                       | iDT+HSV         | 87.9% |  |  |  |
| 59.4%                       | Two Stream      | 88.0% |  |  |  |
| 63.2%                       | TDD+FV          | 90.3% |  |  |  |
| ult <b>65.9%</b>            | Our best result | 91.5% |  |  |  |
| and of TDDs to the state of |                 |       |  |  |  |

#### Table 4: Comparison of TDDs to the state of the art. Model and code is available at http://wanglimin.github.io/tdd/index.html