
Action Recognition with Trajectory-Pooled
Deep-Convolutional Descriptors

Limin Wang1,2 Yu Qiao2 Xiaoou Tang1,2

1Department of Information Engineering, The Chinese University of Hong Kong
2Shenzhen Institutes of Advanced Technology, CAS, China

Introduction
Trajectory extraction Trajectory pooling Fisher vectorInput video

Input video

H
an

d
-C

ra
ft

ed
D

ee
p

-L
ea

rn
ed

HOG HOF MBH

Pooling LayerConvolution Layer ... Prediction

...

Figure 1: Two types of features in action recognition.

•Goal: Design new features sharing merits of both hand-crafted and
deep-learned features for video representation.

•Existing works:
◮ Improved trajectories [1]: (i) Extracting trajectories. (ii) Pooling local features

along trajectories (HOG, HOF, MBH).
◮ Two-stream ConvNets [2]: (i) Stacking frames or optical flow fields. (ii)

Learning features for classification with CNNs.
•Our idea: Trajectory-Pooled Deep-Convolutional Descriptors (TDD):

◮ (i) we exploit deep architectures to learn discriminative convolutional feature maps.
◮ (ii) we perform trajectory-constrained pooling to aggregate these convolutional

feature maps into effective descriptors.
•Advantages:

◮ TDDs are automatically learned and contain high discriminative capacity compared
with those hand-crafted features;

◮ TDDs take account of the intrinsic characteristics of temporal dimension and
introduce the strategies of trajectory-constrained sampling and pooling.

Improved Trajectories Revisited

• Improved trajectories:
◮ Densely sampling a set of points and tracking them by media filtering:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)|(xt,yt)

◮ Camera motion estimation: determining a homography matrix by using SURF
feature matching and optical flow matching.

◮ Camera motion estimation is capable of rectifying the optical flow fileds and
removing the trajectories of background.

• iDTs for TDDs
◮ Given a video V, we obtain a set of trajectories: T(V) = {T1,T2, · · · ,TK}

◮ Tk denotes the kth trajectory in the original spatial scale:

Tk = {(xk
1, yk

1, zk
1), (xk

2, yk
2, zk

2), · · · , (xk
P, yk

P, zk
P)}

◮ where (xk
p, yk

p, zk
p) is the pixel position, and P is the length of trajectory (P = 15).

Deep Convolutional Descriptors

+

Extracting Trajectories Extracting Feature Maps

Trajectory-Pooled Deep-Convolutional Descriptors (TDDs)

input video tracking in a single scale trajectories spatial & temporal nets frame & flow pyramidfeature pyramid

…

…

convolutional feature map feature map normalization trajectory-constrained pooling

T
D

D

X

Y

Z

spatiotemporal normalization channel normalization

…

…

+

+

+

Figure 2: TDD extraction pipeline.

Layer conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 full6 full7 full8
size 7 × 7 3 × 3 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 - - -

stride 2 2 2 2 1 1 1 2 - - -
channel 96 96 256 256 512 512 512 512 4096 2048 101

map size ratio 1/2 1/4 1/8 1/16 1/16 1/16 1/16 1/32 - - -
receptive field 7 × 7 11 × 11 27 × 27 43 × 43 75 × 75 107 × 107 139 × 139 171 × 171 - - -

Table 1: ConvNet Architectures.

•Convolutional networks:
◮ We choose the two-stream ConvNets, which is composed of spatial nets and

temporal nets.
◮ Spatial nets capture static appearance cues and are trained on single frame

images (224 × 224 × 3),
◮ Temporal nets describe the dynamic motion information and are trained on the

stacking of optical flow fields (224 × 224 × 20).
•Convolutional feature maps:

◮ We use two-stream ConvNets as generic feature extractors:

C(V) = {Cs
1,Cs

2, · · · ,Cs
M,Ct

1,Ct
2, · · · ,Ct

M},

where Cs
m ∈ RHm×Wm×L×Nm is the mth feature map.

◮ We conduct zero padding of the layer’s input with size ⌊k/2⌋ before each
convolutional or pooling layer, with kernel size k.

◮ A point with video coordinates (xp, yp, zp) will be centered on (r × xp, r × yp, zp) in
convolutional map, where r is map size ratio.

•Trajectory-pooled descriptors:
◮ Two normalization methods:

◮ Spatiotemporal normalization: C̃st(x, y, z, n) = C(x, y, z, n)/maxVn
st.

◮ Channel normalization: C̃ch(x, y, z, n) = C(x, y, z, n)/maxVx,y,z
ch .

◮ Sum pooling along trajectory:

D(Tk, C̃a
m) =

P∑

p=1

C̃a
m((rm × xk

p), (rm × yk
p), zk

p)

◮ Multi-scale TDD extension: we construct multi-scale pyramid representations of
video frames and optical flow fields, which are transformed into multi-scale
convolutional feature maps by ConvNets.

Experimental Results

(a) RGB (b) Flow-x (c) Flow-y (d) S-conv4 (e) S-conv5 (f) T-conv3 (g) T-conv4

Figure 3: Examples of video frames, optical flow fields, and feature maps.
Spatial ConvNets Temporal ConvNets

Convolutional layer conv1 conv2 conv3 conv4 conv5 conv1 conv2 conv3 conv4 conv5
Recognition accuracy 24.1% 33.9% 41.9% 48.5% 47.2% 39.2% 50.7% 54.5% 51.2% 46.1%

Table 2: The performance of different layers of spatial nets and temporal nets.

32 64 128 256
0.38

0.4

0.42

0.44

0.46

0.48

PCA Dimension

A
c
c
u
ra

c
y

No Norm.Cha. Norm.ST. Norm. Combine
0.44

0.45

0.46

0.47

0.48

0.49

Normalizaiton Method

A
c
c
u
ra

c
y

Figure 4: Left: Performance trend with varying PCA reduced dimension. Right:
Comparison of different normalization methods.

Algorithm HMDB51 UCF101 Algorithm HMDB51 UCF101
HOG [1] 40.2% 72.4% Spatial conv4 48.5% 81.9%
HOF [1] 48.9% 76.0% Spatial conv5 47.2% 80.9%
MBH [1] 52.1% 80.8% Spatial conv4 and conv5 50.0% 82.8%
HOF+MBH [1] 54.7% 82.2% Temporal conv3 54.5% 81.7%
iDT [1] 57.2% 84.7% Temporal conv4 51.2% 80.1%
Spatial net [2] 40.5% 73.0% Temporal conv3 and conv4 54.9% 82.2%
Temporal net [2] 54.6% 83.7% TDD 63.2% 90.3%
Two-stream ConvNets [2] 59.4% 88.0% TDD and iDT 65.9% 91.5%

Table 3: Comparison of TDD with iDT features [1] and two-stream ConvNets [2].

HMDB51 UCF101
STIP+BoVW 23.0% STIP+BoVW 43.9%
Motionlets 42.1% Deep Net 63.3%
DT+BoVW 46.6% DT+VLAD 79.9%
DT+MVSV 55.9% DT+MVSV 83.5%
iDT+FV 57.2% iDT+FV 85.9%
iDT+HSV 61.1% iDT+HSV 87.9%
Two Stream 59.4% Two Stream 88.0%
TDD+FV 63.2% TDD+FV 90.3%
Our best result 65.9% Our best result 91.5%

Table 4: Comparison of TDDs to the state of the art.
Model and code is available at http://wanglimin.github.io/tdd/index.html

References
1. H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
2. K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.

Limin Wang, Yu Qiao, and Xiaoou Tang IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015


