

A Comparative Study of Encoding, Pooling and Normalization Methods for Action Recognition

Xingxing Wang¹ (xx.wang@siat.ac.cn) Limin Wang ^{1,2}(Im.wang@siat.ac.cn) Yu Qiao ^{1,2} (yu.qiao@siat.ac.cn) ¹Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China, ²Department of Information Engineering, The Chinese University of Hong Kong

Introduction

Motivation. Bag of visual words (BoVW) models have been widely and successfully used in video based action recognition. One key step in constructing BoVW representation is to encode feature with codebook. Recently, a number of new encoding methods have been developed to improve the performance of BoVW based object recognition and scene classification, but their effects for action recognition are still unknown.

Overview. The main objective of this paper is as follows,

- evaluate and compare these new encoding methods in the context of video based action recognition
- analyze and evaluate the combination of encoding methods with different pooling and normalization strategies. **Results.** Our experiments show that new encoding methods can significantly improve the recognition accuracy compared with classical VQ.

Methods

Codebook Generation Methods :

K-means:

$$\min \mathcal{J}(\{r_{mk}, d_k\}) = \sum_{m=1}^{M} \sum_{k=1}^{K} r_{mk} \|\mathbf{x}_m - \mathbf{d}_k\|^2.$$

$$K$$

II. GMM:

$$p(\mathbf{x}; \theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k),$$

IV. Locality-constrained Linear Encoding (LLC).

$$\begin{aligned} \mathbf{u}_n &= \arg\min_{\mathbf{u}\in\mathbb{R}^K} \|\mathbf{x}_n - \mathbf{D}\mathbf{u}\|^2 + \lambda \|\mathbf{s}_n \odot \mathbf{u}\|^2 \\ \text{s.t.} \quad \mathbf{1}^T \mathbf{u}_n = 1. \end{aligned}$$

$$\mathbf{s}_n = \exp\left(\frac{\operatorname{dist}(\mathbf{x}_n, \mathbf{D})}{\sigma}\right)$$

Fisher Kernel Encoding (FK). V.

$$1 T (\mathbf{x}, \mu)$$

Encoding Methods:

Vector Quantization (VQ).

$$u_{nk} = \begin{cases} 1. & \text{if } k = \arg\min_k \|\mathbf{x}_n - \mathbf{d}_k\|^2. \\ 0. & \text{otherwise.} \end{cases}$$

Soft-assignment Encoding (SA). II.

$$u_{nk} = \frac{\exp(-\beta \|\mathbf{x}_n - \mathbf{d}_k\|^2)}{\sum_{j=1}^{K} \exp(-\beta \|\mathbf{x}_n - \mathbf{d}_j\|^2)}, \ u_{nk} = \frac{\exp(-\beta \hat{d}(\mathbf{x}_n, \mathbf{d}_k))}{\sum_{j=1}^{K} \exp(-\beta \hat{d}(\mathbf{x}_n, \mathbf{d}_j))},$$

$$\hat{d}(\mathbf{x}_n, \mathbf{d}_k) = \begin{cases} \|\mathbf{x}_n - \mathbf{d}_k\|^2 & \text{if } \mathbf{d}_k \in N_k(\mathbf{x}_n), \\ \infty & \text{otherwise,} \end{cases}$$

Sparse Encoding (SPC).

$$\mathbf{u}_n = \arg\min \|\mathbf{x}_n - \mathbf{D}\mathbf{u}\|^2 + \lambda \|\mathbf{u}\|_1$$

$$\mathcal{G}_{\mu,k}^{\mathbf{X}} = \frac{1}{T\sqrt{\pi_k}} \sum_{t=1}^{T} \gamma_t(k) \left(\frac{\mathbf{x}_t - \mu_k}{\sigma_k} \right),$$
$$\mathcal{G}_{\sigma,k}^{\mathbf{X}} = \frac{1}{T\sqrt{\pi_k}} \sum_{t=1}^{T} \gamma_t(k) \left[\frac{(\mathbf{x}_t - \mu_k)^2}{\sigma_k^2} - 1 \right].$$

Pooling and Normalization methods:

Pooling

Sum pooling, With sum pooling scheme, the kth component of p is $p_k = \sum_{n=1}^N u_{nk}$ Max pooing, With max pooling scheme, the kth component of p is $p_k = \max\{u_{1k}, u_{2k}, \cdots, u_{nk}\}$

II. Normalization

L1, In ℓ 1 normalization, feature p is normalized by its ℓ 1-norm: $p = p / \sum_{k=1}^{K} |p_k|$ **L2,** In ℓ 2 normalization [4], feature p is normalized by its

*l*2-norm: $p=p/\sqrt{\sum_{k=1}^{K} p_k^2}$

Power, In power normalization , we apply the following function for each

Evaluation

Table 1. Comparison the proposed methods with state of the art on KTH.

Table 2. Comparison the proposed methods with state of the art on HMDB51.