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Weakly Supervised PatchNets: Describing and
Aggregating Local Patches for
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Abstract— Traditional feature encoding scheme (e.g., Fisher
vector) with local descriptors (e.g., SIFT) and recent convo-
lutional neural networks (CNNs) are two classes of successful
methods for image recognition. In this paper, we propose a hybrid
representation, which leverages the discriminative capacity of
CNNs and the simplicity of descriptor encoding schema for
image recognition, with a focus on scene recognition. To this end,
we make three main contributions from the following aspects.
First, we propose a patch-level and end-to-end architecture
to model the appearance of local patches, called PatchNet.
PatchNet is essentially a customized network trained in a weakly
supervised manner, which uses the image-level supervision to
guide the patch-level feature extraction. Second, we present
a hybrid visual representation, called VSAD, by utilizing the
robust feature representations of PatchNet to describe local
patches and exploiting the semantic probabilities of PatchNet
to aggregate these local patches into a global representation.
Third, based on the proposed VSAD representation, we propose a
new state-of-the-art scene recognition approach, which achieves
an excellent performance on two standard benchmarks: MIT
Indoor67 (86.2%) and SUN397 (73.0%).

Index Terms—Image representation,
PatchNet, VSAD, semantic codebook.

scene recognition,

I. INTRODUCTION
MAGE recognition is an important and fundamental prob-
lem in computer vision research [1]-[7]. Successful recog-
nition methods have to extract effective visual representations
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to deal with large intra-class variations caused by scale
changes, different viewpoints, background clutter, and so
on. Over the past decades, many efforts have been
devoted to extracting good representations from images, and
these representations may be roughly categorized into two
types, namely hand-crafted representations and deeply-learned
representations.

In the conventional image recognition approaches, hand-
crafted representation is very popular due to its simplic-
ity and low computational cost. Normally, traditional image
recognition pipeline is composed of feature extraction, fea-
ture encoding (aggregating), and classifier training. In fea-
ture extraction module, local features, such as SIFT [8],
HOG [9], and SURF [10], are extracted from densely-sampled
image patches. These local features are carefully designed
to be invariant to local transformation yet able to capture
discriminative information. Then, these local features are
aggregated with a encoding module, like Bag of Visual
Words (BoVW) [11], [12], Sparse coding [13], Vector of
Locally Aggregated Descriptor (VLAD) [14], and Fisher vec-
tor (FV) [15], [16]. Among these encoding methods, Fisher
Vector and VLAD can achieve good recognition performance
with a shallow classifier (e.g., linear SVM).

Recently, Convolutional Neural Networks (CNNs) [17] have
made remarkable progress on image recognition since the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 [18]. These deep CNN models directly learn discrim-
inative visual representations from raw images in an end-
to-end manner. Owing to the available large scale labeled
datasets (e.g., ImageNet [19], Places [3]) and powerful com-
puting resources (e.g., GPUs and parallel computing cluster),
several successful deep architectures have been developed to
advance the state of the art of image recognition, including
AlexNet [1], VGGNet [20], GoogLeNet [21], and ResNet [2].
Compared with conventional hand-crafted representations,
CNNs are equipped with rich modeling power and capable
of learning more abstractive and robust visual representations.
However, the training of CNNs requires large number of
well-labeled samples and long training time even with GPUs.
In addition, CNNs are often treated as black boxes for image
recognition, and it is still hard to well understand these deeply-
learned representations.

In this paper we aim to present a hybrid visual repre-
sentation for image recognition, which shares the merits of
hand-crafted representation (e.g., simplicity and interpretab-
ility) and deeply-learned representation (e.g., robustness
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and effectiveness). Specifically, we first propose a patch-level
architecture to model the visual appearance of a small region,
called as PatchNet, which is trained to maximize the perfor-
mance of image-level classification. This weakly supervised
training scheme not only enables PatchNets to yield effective
representations for local patches, but also allows for efficient
PatchNet training with the help of global semantic labels.
In addition, we construct a semantic codebook and propose a
new encoding scheme, called as vector of semantically aggre-
gated descriptors (VSAD), by exploiting the prediction score
of PatchNet as posterior probability over semantic codewords.
This VSAD encoding scheme overcomes the difficulty of
dictionary learning in conventional methods like Fisher vector
and VLAD, and produce more semantic and discriminative
global representations. Moreover, we design a simple yet
effective algorithm to select a subset of discriminative and
representative codewords. This subset of codewords allows us
to further compress the VSAD representation and reduce the
computational cost on the large-scale dataset.

To verify the effectiveness of our proposed representa-
tions (i.e., PatchNet and VSAD), we focus on the problem
of scene recognition. Specifically, we learn two PatchNets on
two large-scale datasets, namely ImageNet [19] and Places [3],
and the resulted PacthNets denoted as object-PatchNet and
scene-PatchNet, respectively. Due to the different training
datasets, object-PatchNet and scene-PatchNet exhibit different
but complementary properties, and allows us to develop more
effective visual representations for scene recognition. As scene
can be viewed as a collection of objects arranged in a certain
spatial layout, we exploit the semantic probability of object-
PatchNet to aggregate the features of the global pooling
layer of scene-PatchNet. We conduct experiments on two
standard scene recognition benchmarks (MIT Indoor67 [22]
and SUN397 [23]) and the results demonstrate the superior
performance of our VSAD representation to the current state-
of-the-art approaches. Moreover, we comprehensively study
different aspects of PatchNets and VSAD representations,
aiming to provide more insights about our proposed new image
representations for scene recognition.

The main contributions of this paper are summarized as
follows:

« We propose a patch-level CNN to model the appearance
of local patches, called as PatchNet. PatchNet is trained
in a weakly-supervised manner simply with image-level
supervision. Experimental results imply that PatchNet is
more effective than classical image-level CNNs to extract
semantic and discriminative features from local patches.

« We present a new image representation, called as
VSAD, which aggregates the PatchNet features from
local patches with semantic probabilities. VSAD differs
from previous CNN+FV for image representation on how
to extract local features and how to estimate posterior
probabilities for features aggregation.

« We exploit VSAD representation for scene recognition
and investigate its complementarity to global CNN rep-
resentations and traditional feature encoding methods.
Our method achieves the state-of-the-art performance
on the two challenging scene recognition benchmarks,
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i.e., MIT Indoor67 (86.2%) and SUN397 (73.0%), which
outperforms previous methods with a large margin. The
code of our method and learned models are made avail-
able to facilitate the future research on scene recognition. !
The remainder of this paper is organized as follows.
In Section II, we review related work to our method. After
this, we briefly describe the Fisher vector representation to
well motivate our method in Section III. We present the
PatchNet architecture and VSAD representation in Section IV
and propose a codebook selection method in Section V. Then,
we present our experimental results, verify the effectiveness
of PatchNet and VSAD, and give a detailed analysis of our
method in Section VI. Finally, Section VII concludes this
work.

II. RELATED WORK

In this section we review related methods to our
approach from the aspects of visual representation and scene
recognition.

A. Visual Representation

Image recognition has received extensive research attention
in past decades [1]-[4], [13], [16], [24]-[30]. Early works
focused on Bag of Visual Word representation [11], [12],
where local features were quantinized into a single word
and a global histogram was utilized to summarize the visual
content. Soft assigned encoding [31] method was introduced
to reduce the information loss during quantization. Sparse
coding [13] and Locality-constrained linear coding [32] was
proposed to exploit sparsity and locality for dictionary learning
and feature encoding. High dimensional encoding methods,
such as Fisher vector [16], VLAD [14], and Super Vector [24],
was presented to reserve high-order information for better
recognition. Our VSAD representation is mainly inspired by
the encoding method of Fisher vector and VLAD, but differs
in aspects of codebook construction and aggregation scheme.

Dictionary learning is another important component in
image representation and feature encoding methods. Tradi-
tional dictionary (codebook) is mainly based on unsupervised
learning algorithms, including k-means [11], [12], Gaussian
Mixture Models [16], k-SVD [33]. Recently, to enhance
the discriminative power of dictionary, several algorithms
were designed for supervised dictionary learning [34]-[36].
Boureau et al. [34] proposed a supervised dictionary learn-
ing method for sparse coding in image classification.
Peng et al. [36] designed a end-to-end learning to jointly
optimize the dictionary and classifier weights for the encoding
method VLAD. Sydorov et al. [35] presented a deep kernel
framework and learn the parameters of GMM in a supervised
way. The supervised GMMs were exploited for Fisher vector
encoding. Wang et al. [37] proposed a set of good practices
to enhance the codebook of VLAD representation. Unlike
these dictionary learning method, the learning of our semantic
codebook is weakly supervised with image-level labels trans-
ferred from the ImageNet dataset. We explicitly exploit object

1 https://github.com/wangzheallen/vsad



2030

semantics in the codebook construction within our PatchNet
framework.

Recently Convolutional Neural Networks (CNNs) [17] have
enjoyed great success for image recognition and many effec-
tive network architectures have been developed since the
ILSVRC 2012 [18], such as AlexNet [1], GoogLeNet [21],
VGGNet [20], and ResNet [2]. These powerful CNN archi-
tectures have turned out to be effective for capturing visual
representations for large-scale image recognition. In addition,
several new optimization algorithms have been also proposed
to make the training of deep CNNs easier, such as Batch
Normalization [38], and Relay Back Propagation [4]. Mean-
while, some deep learning architectures have been specifically
designed for scene recognition [39]. Wang et al. [39] proposed
a multi-resolution CNN architecture to capture different levels
of information for scene understanding and introduced a soft
target to disambiguate similar scene categories. Our PatchNet
is a customized patch-level CNN to model local patches,
while those previous CNNs aim to capture the image-level
information for recognition.

There are several works trying to combine the encoding
methods and deeply-learned representations for image and
video recognition [40]-[45]. These works usually were com-
posed of two steps, where CNNs were utilized to extract
descriptors from local patches and these descriptors were
aggregated by traditional encoding methods. For instance,
Gong et al. [43] employed VLAD to encode the activa-
tion features of fully-connected layers for image recogni-
tion. Dixit et al. [42] designed a semantic Fisher vector
to aggregate features from multiple layers (both convolu-
tional and fully-connected layers) of CNNs for scene recog-
nition. Guo et al. [40] developed a locally-supervised training
method to optimize CNN weights and proposed a hybrid
representation for scene recognition. Arandjelovic et al. [44]
developed a new generalized VLAD layer to train an end-
to-end network for instance-level recognition. Our work is
along the same research line of combining conventional and
deep image representations. However, our method differs from
these works on two important aspects: (1) we design a new
PatchNet architecture to learn patch-level descriptors in a
weakly supervised manner. (2) we develop a new aggre-
gating scheme to summarize local patches (VSAD), which
overcomes the limitation of unsupervised dictionary learning,
and makes the final representation more effective for scene
recognition.

B. Scene Recognition

Scene recognition is an important task in computer vision
research [3], [39], [46]-[50] and has many applications such
as event recognition [5], [6] and action recognition [51]-[53].
Early methods made use of hand-crafted global features, such
as GIST [46], for scene representation. Global features are usu-
ally extracted efficiently to capture the holistic structure and
content of the entire image. Meanwhile, several local descrip-
tors (e.g., SIFT [8], HOG [9], and CENTRIST [47]) have
been developed for scene recognition within the frameworks of
Bag of Visual Words (e.g., Histogram Encoding [12], Fisher
vector [15]). These representations leveraged information of
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local regions for scene recognition and obtained good per-
formance in practice. However, local descriptors only exhibit
limited semantics and so several mid-level and high-level rep-
resentations have been introduced to capture the discriminative
parts of scene content (e.g., mid-level patches [54], distinctive
parts [55], object bank [50]). These mid-level and high-level
representations were usually discovered in an iterative way
and trained with a discriminative SVM. Recently, several
structural models were proposed to capture the spatial layout
among local features, scene parts, and containing objects,
including spatial pyramid matching [56], deformable part
based model [57], reconfigurable models [58]. These structural
models aimed to describe the structural relation among visual
components for scene understanding.

Our PatchNet and VSAD representations is along the
research line of exploring more semantic parts and objects
for scene recognition. Our method has several important dif-
ferences from previous scene recognition works: (1) we utilize
the recent deep learning techniques (PatchNet) to describe
local patches for CNN features and aggregate these patches
according to their semantic probabilities. (2) we also explore
the general object and scene relation to discover a subset of
object categories to improve the representation capacity and
computational efficiency of our VSAD.

III. MOTIVATING PatchNets

In this section, we first briefly revisit Fisher vector method.
Then, we analyze the Fisher vector representation to well
motivate our approach.

A. Fisher Vector Revisited

Fisher vector [16] is a powerful encoding method derived
from Fisher kernel and has proved to be effective in var-
ious tasks such as object recognition [15], scene recog-
nition [55], and action recognition [59], [60]. Like other
conventional image representations, Fisher vector aggregates
local descriptors into a global high-dimensional representa-
tion. Specifically, a Gaussian Mixture Model (GMM) is first
learned to describe the distribution of local descriptors. Then,
the GMM posterior probabilities are utilized to softly assign
each descriptor to different mixture components. After this,
the first and second order differences between local descriptors
and component center are aggregated in a weighted manner
over the whole image. Finally, these difference vectors are
concatenated together to yield the high-dimensional Fisher
vector (2K D), where K is the number of mixture components
and D is the descriptor dimension.

B. Analysis

From the above description about Fisher vector, there are
two key components in this aggregation-based representation:
o The first key element in Fisher vector encoding method is
the local descriptor representation, which determines the
feature space to learn GMMs and aggregate local patches.
o The generative GMM is the second key element, as it
defines a soft partition over the feature space and deter-
mines how to aggregate local descriptors according to this
partition.
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TABLE 1
PATCHNET ARCHITECTURE: WE ADAPT THE SUCCESSFUL INCEPTION V2 [38] STRUCTURE TO THE DESIGN OF PATCHNet,
WHICH TAKES A 128 x 128 IMAGE REGION AS INPUT AND OUTPUTS ITS SEMANTIC PROBABILITY. IN EXPERIMENT,
WE ALSO STUDY THE PERFORMANCE OF PatchNet WITH VGGNet16 [20] STRUCTURE
Layer convl conv2 Inception3a | Inception3b | Inception3c | Inceptionda | Inceptiondb
Feature map size 64 x 64 32 x 32 16 x 16 16 x 16 8% 8 8 x 8 8% 8
Stride 2 1 1 1 2 1 1
Channel 64 192 256 320 576 576 576
Layer map Inceptiondc | Inceptiondd | Inceptionde | Inception5a | Inception5b | global Avg | prediction
Feature map size 8 X 8 8 x 8 4 x4 4 x4 4 x4 1x1 1x1
Stride 1 1 2 1 1 1 1
Channel 608 608 1056 1024 1024 1024 1000
TABLE 11

Conventional image representations rely on hand-crafted
features, which may not be optimal for classification tasks,
while recent methods [42], [43] choose image-level deep
features to represent local patches, which are not designed
for patch description by its nature. Additionally, dictionary
learning (GMM) method heavily relies on the design of patch
descriptor and its performance is highly correlated with the
choice of descriptor. Meanwhile, dictionary learning is often
based on unsupervised learning algorithms and sensitive to the
initialization. Moreover, the learned codebook lacks semantic
property and it is hard to interpret and visualize these mid-level
codewords. These important issues motivate us to focus on
two aspects to design effective visual representations: (1) how
to describe local patches with more powerful and robust
descriptors; and (2) how to aggregate these local descriptors
with more semantic codebooks and effective schemes.

IV. WEAKLY SUPERVISED PATCHNETS

In this section we describe the PatchNet architecture to
model the appearance of local patches and aggregate them
into global representations. First, we introduce the network
structure of PatchNet. Then, we describe how to use learned
PatchNet models to describe local patches. Finally, we develop
a semantic encoding method (VSAD) to aggregate these local
patches, yielding the image-level representation.

A. PatchNet Architectures

The success of aggregation-based encoding methods
(e.g., Fisher vector [15]) indicates that the patch descriptor is
a kind of rich representation for image recognition. A natural
question arises that whether we are able to model the appear-
ance of these local patches with a deep architecture, that is
trainable in an end-to-end manner. However, the current large-
scale datasets (e.g., ImageNet [19], Places [3]) simply provide
the image-level labels without the detailed annotations of
local patches. Annotating every patch is time-consuming and
sometimes could be ambiguous as some patches may contain
part of objects or parts from multiple objects. To handle these
issues, we propose a new patch-level architecture to model
local patches, which is still trainable with the image-level
labels.

Concretely, we aim to learn the patch-level descriptor
directly from raw RGB values, by classifying them into

SUMMARY OF NOTATIONS USED IN OUR METHOD

X local patch sampled from images

z latent variable to model local patches

f patch-level descriptor extracted with PatchNet

P patch-level semantic probability extracted PatchNet
X a set of local patches

F a set of patch descriptors

P a set of semantic probability distributions

Pimage image-level semantic probability

Pcategory semantic probability over images from a category
Pdata semantic probability over all images from a dataset

predefined semantic categories (e.g., object classes, scene
classes). In practice, we apply the image-level label to each
randomly selected patch from this image, and utilize this
transferred label as supervision signal to train the PatchNet.
In this training setting, we do not have the detailed patch-level
annotations and exploit the image-level supervision signal
to learn patch-level classifier. So, the PatchNet could be
viewed as a kind of weakly supervised network. We find
that although the image-level supervision may be inaccurate
for some local patches and the converged training loss of
PatchNet is higher than that of image-level CNN, it is still
able to learn effective representation to describe local patches
and reasonable semantic probability to aggregate these local
patches.

Specifically, our proposed PatchNet is a CNN architecture
taking small patches (128 x 128) as inputs. We adapt two
famous image-level structures (i.e., VGGNet [20] and Incep-
tion V2 [38]) for the PatchNet design. The Inception based
architecture is illustrated in Table I, and its design is inspired
by the successful Inception V2 model with batch normaliza-
tion [38]. The network starts with 2 convolutional and max
pooling layers, subsequently has 10 inception layers, and ends
with a global average pooling layer and fully connected layer.
Different from the original Inception V2 architecture, our final
global average pooling layer has a size of 4 x 4 due to the
smaller input size (128 x 128). The output of PatchNet is
to predict the semantic labels specified by different datasets
(e.g., 1,000 object classes on the ImageNet dataset, 205 scene
classes on the Places dataset). In practice, we train two kinds
of PatchNets: object-PatchNet and scene-PatchNet, and the
training details will be explained in subsection VI-A.
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1) Discussion: Our PatchNet is a customized network for
patch modeling, which differs from the traditional CNN
architectures on two important aspects: (1) our network is
a patch-level structure and its input is a smaller image
region (128 x 128) rather than a image (224 x 224), compared
with those image-level CNNs [1], [20], [21]; (2) our network is
trained in a weakly supervised manner, where we directly treat
the image-level labels as patch-level supervision information.
Although this strategy is not accurate, we empirically demon-
strate that it still enables our PacthNet to learn more effective
representations for aggregation-based encoding methods in our
experiments.

B. Describing Patches

After the introduction of PatchNet architecture, we are ready
to present how to describe local patches with PatchNet. The
proposed PatchNet is essentially a patch-level discriminative
model, which aims to map these local patches from raw
RGB space to a semantic space determined by the supervi-
sion information. PatchNet is composed of a set of standard
convolutional and pooling layers, that process features with
more abstraction and downsample spatial dimension to a
lower resolution, capturing full content of local patches. Dur-
ing this procedure, PatchNet hierarchically extracts multiple-
level representations (hidden layers, denoted as f) from raw
RGB values of patches, and eventually outputs the prob-
ability distribution over semantic categories (output layers,
denoted as p).

The final semantic probability p is the most abstract and
semantic representation of a local patch. Compared with
the semantic probability, the hidden layer activation fea-
tures f are capable of containing more detailed and structural
information. Therefore, multiple-level representations f and
semantic probability p could be exploited in two different
manners: describing and aggregating local patches. In our
experiments, we use the activation features of the last hidden
layer as the patch-level descriptors. Furthermore, in practice,
we could even try the combination of activation features f and
semantic probability p from different PatchNets (e.g., object-
PatchNet, scene-PatchNet). This flexible scheme decouples
the correlation between local descriptor design and dictio-
nary learning, and allows us to make best use of differ-
ent PatchNets for different purposes according to their own
properties.

C. Aggregating Patches

After having introduced the architecture of PatchNet to
describe the patches with multiple-level representations f
in the previous subsection, we present how to aggregate
these patches with semantic probability p of PatchNet in
this subsection. As analyzed in Section III, aggregation-based
encoding methods (e.g., Fisher vector) often rely on generative
models (e.g., GMMs) to calculate the posterior distribution
of a local patch, indicating the probability of belonging to a
codeword. In general, the generative model often introduces
latent variables z to capture the underline factors and the
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complex distribution of local patches x can be obtained by
marginalization over latent variables z as follows:

px) = pxlz)p(2). (1)

However, from the view of aggregation process, only the
posterior probability p(z|x) are needed to assign a local patch
x to these learned codewords in a soft manner. Thus, it will
not be necessary to use generative model p(x) for estimating
p(z|x), and we can directly calculate p(z|x) with our pro-
posed PatchNet. Directly modeling posterior probability with
PatchNet exhibits two advantages over traditional generative
models:

o The estimation of p(x) is a non-trivial task and the
learning of generative models (e.g., GMMs) is sensitive to
the initialization and may converge to a local minimum.
Directly modeling p(z|x) with PatchNets can avoid this
difficulty by training on large-scale supervised datasets.

o Prediction scores of PatchNet correspond to semantic
categories, which is more informative and semantic than
that of the original generative model (e.g., GMMs).
Utilizing this semantic posterior probability enables the
final representation to be interpretable.

1) Semantic Codebook: We first describe the semantic code-
book construction based on the semantic probability extracted
with PatchNet. In particular, given a set of local patches
X = {x1,x2,...,xy}, we first compute their semantic prob-
abilities with PatchNet, denoted as P = {p1,p2,...,pPn}
We also use PatchNet to extract patch-level descriptors

F = {fi,fr,....fy}. Finally, we generate semantic
mean (center) for each codeword as follows:
&
- ke.
x%—mg?m, )

where pf.‘ is the k" dimension of pi, and N is calculated as
follows:

Nk
Ne=D"pf, mi=—. 3)

We can interpret Ny as the prior distribution over the semantic
categories and uj as the category template in this feature space
f. Meanwhile, we can calculate the semantic covariance for
each codeword by the following formula:

N
1
Zp = N E pf (& — )€ — o)’ 4
i=1

The semantic mean and covariance in Equation (2) and (4)
constitute our semantic codebook, and will be exploited
to semantically aggregate local descriptors in the next
paragraph.

2) VSAD: After the description of PatchNet and semantic
codebook, we are able to develop our hybrid visual represen-
tations, namely vector of semantically aggregating descrip-
tor (VSAD). Similar to Fisher vector [15], given a set of local
patches with descriptors {fy,f,...,fr}, we aggregate both
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Patch Samplmg Feature/Probability Extraction Codebook Construction& SelectlonlEncodlng Classification
: Scene-PatchNet

:‘ T i ii i Feature E::>'
Object-PatchNet :
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Fig. 1. Pipeline of our method. We first densely sample local patches in a multi-scale manner. Then, we utilize two kinds of PatchNets to describe
each patch (Scene-PatchNet feature) and aggregate these patches (Object-PatchNet probability). Based on our learned semantic codebook, these local patches
are aggregated into a global representation with VSAD encoding scheme. Finally, these global representations are exploited for scene recognition with
a linear SVM.
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Fig. 2. TIllustration of scene-object relationship. The first row is the Bedroom scene with its top 5 most likely object classes. Specifically, we feed all the
training image patches of the Bedroom scene into our PatchNet. For each object category, we sum over the conditional probability over all training patches
as the response for this object. The results are shown in the 1st column. We then show five object classes (top 5 objects) for the Bedroom scene (the second
to the sixth column). The second row is an illustration for the Gym scene, which is a similar case to Bedroom.

first order and second order information of local patches with Since our semantic codebook is constructed based on the
respect to semantic codebook as follows: semantic probability p of object-PatchNet, the size of our
T codebook is equal to the number of object categories from

Sp = L pr (f’_—"”‘) , (5) our PatchNet (i.e., 1000 objects in ImageNet). However, this

V7K =1 Ok fact may reduce the effectiveness of our VSAD representation

T due to the following reasons:
1 o | & — k) : e

Gk = —— Zp, — 1, (6) e Only a few object categories in ImageNet are closely

VTk t=1 k related with scene category. In this case, many object cat-

where {7, u,o} is semantic codebook defined above, p is egories in our semantic codebook are redundant. We here
the semantic probability calculated from PatchNet, S and use the Bedroom and Gym scene classes (from MIT
G are first and second order VSAD, respectively. Finally, Indoor67 [22]) as an illustration for scene-object rela-
we concatenate these sub-vectors from different codewords to tionship. As shown in Figure 2, we can see that the
form our VSAD representation: [Sy, G1, Sz, G, -+, Sk, Gk 1. Bedroom scene class most likely contains the object

classes Four-poster, Studio couch, Quilt, Window shade,

V. CODEWORD SELECTION FOR SCENE RECOGNITION .. . ..
Dining table. The Gym scene class is a similar case.

In section we take scene recognition as a specific task for Furthermore, we feed all the training patches of MIT
image recognition and utilize object-PatchNet for semantic Indoor 67 into our object-PatchNet. For each object
codebook construction and VSAD extraction. Based on this category, we sum over the conditional probability of all
setting, we propose an effective method to discover a set of the training patches as the response for this object. The
discriminative object classes to compress VSAD representa- result in Figure 3 indicates that around 750 categories
tion. It should be noted that our selection method is general of 1000 are not activated. Hence, the redundance using

and could be applied to other relevant tasks and PatchNets. 1,000 object categories is actually large.
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Fig. 3. Illustration of the object responses in the object-PatchNet. Specifically, we feed all the training patches (MIT Indoor 67) into our object-PatchNet,
and obtain the corresponding probability distribution for each patch. For each object category, we use the sum of probabilities over all the training patches as
the response of this object category. Then we sort the responses of all the object categories in a descent order. For visual clarity, we here show four typical
groups with high (from restaurant to studio couch), moderate (from screen to television), minor (from sweatshirt to rifle), and low responses (from hyena to
great grey owl). We can see that the groups with the minor and low response (the response rank of these objects: around 250 to 1000) make very limited
contribution to the whole scene dataset. Hence, we should design our selection strategy to discard them to reduce the redundance of our semantic codebook.

« From the computational perspective, the large size of
codebook will prohibit the application of VSAD on large-
scale datasets due to the huge consumption of storage and
memory. Therefore, it is also necessary to select a subset
of codewords (object categories) to compress the VSAD
representation and improve the computing efficiency.

Hence, we propose a codeword selection strategy as follows

to enhance the efficiency of our semantic codebook and
improve the computation efficiency of our VSAD represen-
tation. Specifically, we take advantage of the scene-object
relationship to select K classes of 1000 ImageNet objects
for our semantic codebook generation. First, the probability
vector pparen Of the object classes for each training patch is
obtained from the output of our PatchNet. We then compute
the response of the object classes for each training image
Pimage> €ach scene category Pcaregory and the whole training
data Pdata

T (when selecting Ocqregory), starting from one. Additionally,
to speed up the selection procedure, we choose 2K as the
size of Oggrq- Note that, our selected object set O is the
intersection of Ocaregory and Ogarq. In this case, the selected
object classes not only contain the general characteristics of
the entire scene dataset, but also the specific characteristics of
each scene category. Consequentially, this selection strategy
enhances the discriminative power of our semantic codebook
and VSAD representations, yet is still able to reduce the
computational cost.

VI. EXPERIMENTS

In this section we evaluate our method on two standard
scene recognition benchmarks to demonstrate its effectiveness.
First, we introduce the evaluation datasets and the implemen-
tation details of our method. Then, we perform exploration
experiments to determine the important parameters of the

DPimage = Z . Dpatch (7 VSAD representation. Afterwards, we comprehensively study
patcheimage the performance of our proposed PatchNets and VSAD repre-

Pcategory = Zimageem regory Pimage (8) sentations. In addition, we also compare our method with other
state-of-the-art approaches. Finally, we visualize the semantic

Pdata = Zcmrgory cdata Peategory (9 codebook and the scene categories with the most performance

Second, we rank pg,, in the descending order and select 2K
object classes (with top 2K highest responses). We denote
the resulting object set as Ogu1q = {0 ﬂ?’; 1~ Third, for each
scene category, we rank pcqregory in the descending order
and select T object classes (with top T highest responses).
Then we collect the object classes for all the scene categories
together, and delete the duplicate object classes. We denote
the object set as Ocaregory = {oi}i"il, where M is the number
of object classes in Ocqregory. Finally, the intersection of
Ocategory and Ogqrq is used as the selected object class set,
ie., O < Ocaregory N Ogdara. To constrain the number of
object classes as the predefined K, we can gradually increase

improvement.

A. Evaluation Datasets and Implementation Details

Scene recognition is a challenging task in image recognition,
due to the fact that scene images of the same class exhibit large
intra-class variations, while images from different categories
contain small inter-class differences. Here, we choose this
challenging problem of scene recognition as the evaluation
task to demonstrate the effectiveness of our proposed PatchNet
architecture and VSAD representation. Additionally, scene
image can be viewed as a collection of objects arranged in
the certain layout, where the small patches may contain rich
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Exploration study on the MIT Indoor67 dataset. Left: performance comparison of different codebook selection methods; Middle: performance

comparison of different numbers of sampled patches; Right: performance comparison of different descriptor dimension reduced by PCA.

object information and can be effectively described by our
PatchNet. Thus scene recognition is more suitable to evaluate
the performance of VSAD representation.

1) Evaluation Datasets: In our experiment, we choose
two standard scene recognition benchmarks, namely MIT
Indoor67 [22] and SUN397 [23]. The MIT Indoor67 dataset
contains 67 indoor-scene classes and has 15,620 images in
total. Each scene category contains at least 100 images,
where 80 images are for training and 20 images for testing.
The SUN397 dataset is a larger scene recognition dataset,
including 397 scene categories and 108,754 images, where
each category also has at least 100 images. We follow the
standard evaluation from the original paper [23], where each
category has 50 images for training and 50 images for testing.
Finally, the average classification accuracy over 10 splits is
reported.

2) Implementation Details of PatchNet Training: In our
experiment, to fully explore the modeling power of PatchNet,
we train two types of PatchNets, namely scene-PatchNet
and object-PatchNet with the MPI extension [61] of Caffe
toolbox [62]. The scene-PatchNet is trained on the large-
scale Places dataset [3], and the object-PatchNet is learned
from the large-scale ImageNet dataset [19]. The Places dataset
contains around 2,500,000 images and 205 scene categories
and the ImageNet dataset has around 1,300,000 images and
1,000 object categories. We train both PatchNets from scratch
on these two-large scale datasets. Specifically, we use the sto-
chastic gradient decent (SGD) algorithm to optimize the model
parameters, where momentum is set as 0.9 and batch size is set
as 256. The learning rate is initialized as 0.01 and decreased
to its % every K iterations. The whole learning process stops
at 3.5K iterations. K is set as 200,000 for the ImageNet
dataset and 350,000 for the Places dataset. To reduce the
effect of over-fitting, we adopt the common data augmentation
techniques. We first resize each image into size of 256 x 256.
Then we randomly crop a patch of size s x s from each
image, where s € {64, 80,96, 112, 128, 144, 160, 176, 192}.
Meanwhile, these cropped patches are horizontally flipped
randomly. Finally, these cropped image regions are resized
as 128 x 128 and fed into PatchNet for training. The object-
PatchNet achieves the recognition performance of 85.3%
(top-5 accuracy) on the ImageNet dataset and the

scene-PatchNet obtains the performance of 82.7%
(top-5 accuracy) on the Places dataset.

3) Implementation Details of Patch Sampling and Clas-
sifier:  An important implementation detail in the VSAD
representation is how to densely sample patches from the input
image. To deal with the large intra-class variations existed
in scene images, we design a multi-scale dense sampling
strategy to select image patches. Specifically, like training
procedure, we first resize each image to size of 256 x 256.
Then, we sample patches of size s x s from the whole image
in the grid of 10 x 10. Sizes s of these sampled patches
range from {64, 80, 96, 112, 128, 144, 160, 176, 192}. These
sampled image patches also go under horizontal flipping for
further data augmentation. Totally, we have 9 different scales
and each scale we sample 200 patches (10 x 10 grid and
2 horizontal flips). Normalization and recognition classi-
fier are other important factors for all encoding meth-
ods (i.e., average pooling, VLAD, Fisher vector, and VSAD).
In our experiment, the image-level representation is signed-
square-rooted and L2-normalized for all encoding meth-
ods. For classification, we use a linear SVM (C=1)
trained in the one-vs-all setting. The final predicted class
is determined by the maximum score of different binary
SVM classifiers.

B. Exploration Study

In this subsection we conduct exploration experiments to
determine the parameters of important components in our
VSAD representation. First, we study the performance of our
proposed codeword selection algorithm and determine how
many codewords are required to construct efficient VSAD
representation. Then, we study the effectiveness of proposed
multi-scale sampling strategy and determine how many scales
are needed for patch extraction. Afterwards, we conduct
experiments to explore the dimension reduction of PatchNet
descriptors. Finally, we study the influence of different net-
work structures and compare Inception V2 with VGGNetl6.
In these exploration experiments, we choose scene-PatchNet
to describe each patch (i.e., extracting descriptors f), and
object-PatchNet to aggregate patches (i.e., utilizing semantic
probability p). We perform this exploration experiment on the
dataset of MIT Indoor67.
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1) Exploration on Codeword Selection: We begin our exper-
iments with the exploration of codeword selection. We propose
a selection strategy to choose the number of object cate-
gories (the codewords of semantic codebook) in Section V.
We report the performance of VSAD representation with dif-
ferent codebook sizes in the left of Figure 4. To speed up this
exploration experiment, we use PCA to pre-process the patch
descriptor f by reducing its dimension from 1,024 to 100.
In our study, we compare the performance of our selection
method with the random selection. As expected, our selection
method outperforms the random selection, in particular when
the number of selected codewords are small. Additionally,
when selecting 256 codewords, we can already achieve a
relatively high performance. Therefore, to keep a balance
between recognition performance and computing efficiency,
we fix the number of selected codewords as 256 in the
remaining experiments.

2) Exploration on Multi-Scale Sampling Strategy: After the
exploration of codeword selection, we investigate the perfor-
mance of our proposed multii%Zscale dense sampling strategy
for patch extraction. In this exploration study, we choose
four types of encoding methods: (1) average pooling over
patch descriptors f, (2) Fisher vector, (3) VLAD, and (4) our
proposed VSAD. We sample image patches from 1 scale to
9 scales, resulting in the number of patches from 200 to 1800.
The experimental results are summarized in the middle of
Figure 4. We notice that the performance of traditional encod-
ing methods (i.e., Fisher vector, VLAD) is more sensitive to
the number of sampled patches, while the performance of
our proposed VSAD increases gradually as more patches are
sampled. We analyze that the traditional encoding methods
heavily rely on unsupervised dictionary learning (i.e., GMMs,
k-means), whose training is unstable when the number of
sampled patches is small. Moreover, we observe that our
VSAD representation is still able to obtain high performance
when only 200 patches are sampled, which again demonstrates
the effectiveness of semantic codebook and VSAD representa-
tions. For real application, we may simply sample 200 patches
for fast processing, but to fully reveal the representation
capacity of VSAD, we crop image patches from 9 scales in
the remaining experiments.

3) Exploration on Dimension Reduction: The dimension
of scene-PatchNet descriptor f is relatively high (1,024) and
it may be possible to reduce its dimension for VSAD rep-
resentation. So we perform experiments to study the effect
of dimension reduction on scene-PatchNet descriptor. The
numerical results are reported in the right of Figure 4 and the
performance difference is relatively small for different dimen-
sions (the maximum performance difference is around 0.5%).
We also see that PCA dimension reduction can not bring the
performance improvement for VSAD representation, which
is different from traditional encoding methods (e.g., Fisher
vector, VLAD). This result could be explained by two possible
reasons: (1) PatchNet descriptors are more discriminative and
compact than hand-crafted features and dimension reduction
may cause more information loss; (2) Our VSAD representa-
tion is based on the semantic codebook, which does not rely
on any unsupervised learning methods (e.g., GMMs, k-means).
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TABLE III

COMPARISON OF DIFFERENT STRUCTURES FOR THE PatchNet
DESIGN ON THE DATASET OF MIT INDOORG67

Descriptor f MIT Indoor67
scene-PatchNet (VGGNet16)+ average pooling 81.1
scene-PatchNet (Inception V2) + average pooling 78.5
scene-PatchNet (VGGNet16)+ VLAD 83.7
scene-PatchNet (Inception V2) + VLAD 83.9
scene-PatchNet (VGGNetl6)+ Fisher vector 81.2
scene-PatchNet (Inception V2) + Fisher vector 83.6
scene-PatchNet (VGGNetl6)+ VSAD 83.9
scene-PatchNet (Inception V2) + VSAD 84.9

Therefore de-correlating different dimensions of descriptors
can not bring any advantage for semantic dictionary learning.
Overall, in the case of fully exploiting the representation power
of VSAD, we could keep the dimension of PatchNet descriptor
as 1,024, and in the case of high computational efficiency,
we could choose the dimension as 100 for fast processing
speed and low dimensional representation.

4) Exploration on Network Architectures: We explore
different network architectures to verify the -effective-
ness of PatchNet and VSAD representation on the MIT
Indoor67 dataset. Specifically, we compare two network struc-
tures: VGGNetl6 and Inception V2. The implementation
details of VGGNetl6 PatchNet are the same with those
of Inception V2 PatchNet, as described in Section VI-A.
We also train two kinds of PatchNets for VGGNet16 structure,
namely object-PatchNet on the ImageNet dataset and scene-
PatchNet on the Places dataset, where the top5 classification
accuracy is 80.1% and 82.9%, respectively. As the last hidden
layer (fc7) of VGGNet16 has a much higher dimension (4096),
we decreases its dimension to 100 as the patch descriptor f for
computational efficiency. For patch aggregating, we use the
semantic probability from object-PatchNet, where we select
the most 256 discriminative object classes. The experimental
results are summarized in Table III and two conclusions can
be drawn from this comparison. First, for both structures
of VGGNetl6 and Inception V2, our VSAD representation
outperforms other three encoding methods. Second, the recog-
nition accuracy of Inception V2 PatchNet is slightly better than
that of VGGNet16 PatchNet, for all aggregation based encod-
ing methods, including VLAD, Fisher vector, and VSAD.
So, in the following experiment, we choose the Inception
V2 as our PatchNet structure.

C. Evaluation on PatchNet Architectures

After exploring the important parameters of our method,
we focus on verifying the effectiveness of PatchNet on
patch modeling in this subsection. Our PatchNet is a patch-
level architecture, whose hidden layer activation features f
could be exploited to describe patch appearance and pre-
diction probability p to aggregate these patches. In this
subsection we compare two network architectures: image-
level CNNs (ImageCNNs) and patch-level CNNs (PatchNets),
and demonstrate the superior performance of PatchNet on
describing and aggregating local patches on the dataset of
MIT Indoor67.
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TABLE IV

COMPARISON OF PatchNet AND IMAGECNN FOR PATCH
MODELING ON THE DATASET OF MIT INDOOR67

Descriptor f object-PatchNet p | object-ImageCNN p
scene-PatchNet (1,024D) 84.9 84.7
scene-PatchNet (100D) 84.3 84.0
scene-ImageCNN (1,024D) 83.8 83.4
scene-ImageCNN (100D) 83.6 83.1
objcet-PatchNet (1,024D) 79.6 79.4
object-PatchNet (100D) 79.5 79.3
object-ImageCNN (1,024D) 79.3 79.2
object-ImageCNN (100D) 79.1 78.7

For fair comparison, we also choose the Inception V2 archi-
tecture [38] as our ImageCNN structure, and following the
similar training procedure to PatchNet, we learn the network
weights on the datasets of ImageNet [19] and Places [3].
The resulted CNNs are denoted as object-ImageCNN and
scene-ImageCNN. The main difference between PatchNet and
ImageCNN is their receptive filed, where PatchNet operates
on the local patches (128 x 128), while ImageCNN takes
the whole image (224 x 224) as input. In this exploration
experiment, we investigate four kinds of descriptors, including
f extracted from scene-PatchNet, scene-ImageCNN, object-
PatchNet, and object-ImageCNN. Meanwhile, we compare the
descriptor f without dimension reduction (i.e., 1,024) and
with dimension reduction to 100. For aggregating semantic
probability p, we choose two types of probabilities from
object-PatchNet and object-ImageCNN respectively.

The experiment results are summarized in Table IV and
several conclusions can be drawn as follows: (1) From the
comparison between object network descriptors and scene net-
work descriptors, we see that scene network descriptor is more
suitable for recognizing the categories from MIT Indoor67,
no matter which architecture and aggregating probability is
chosen; (2) From the comparison between descriptors from
image-level and patch-level architectures, we conclude that
PatchNet is better than ImageCNN. This superior performance
of descriptors from PatchNet indicates the effectiveness of
training PatchNet for local patch description; (3) From the
comparison between aggregating probabilities from PatchNet
and ImageCNN, our proposed PatchNet architecture again
outperforms the traditional image-level CNN, which implies
the semantic probability from the PatchNet is more suitable
for VSAD representation. Overall, we empirically demonstrate
that our proposed PatchNet architecture is more effective for
describing and aggregating local patches.

D. Evaluation on Aggregating Patches

In this subsection we focus on studying the effectiveness
of PatchNet on aggregating local patches. We perform experi-
ments with different types of descriptors and compare VSAD
with other aggregation based encoding methods, including
average pooling, Fisher vector (FV), and VLAD, on both
datasets of MIT Indoor67 and SUN397.

1) Performance With SIFT Descriptors: We first verify the
effectiveness of our VSAD representation by using the hand-
crafted features (i.e., SIFT [8]). For each image, we extract
the SIFT descriptors from image patches (in grid of 64 x 64,
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TABLE V

PERFORMANCE COMPARISON WITH SIFT DESCRIPTORS ON
THE DATASETS OF MIT INDOOR67 AND SUN397

[ Method [ MIT indoor67 | SUN397 |
SIFT+VLAD 32.6 19.2
SIFT+FV 42.8 24.4
Dense-Multiscale-SIFT+VLAD+aug. [63] 53.3 -
Dense-Multiscale-SIFT+Fisher vector [63] 58.3 -
Dense-Multiscale-SIFT+Fisher vector [23] - 38.0
SIFT+ VSAD 60.8 40.3

TABLE VI

PERFORMANCE COMPARISON WITH SCENE-PatchNet DESCRIPTOR
ON THE DATASETS OF MIT INDOOR67 AND SUN397

[ Method [ MIT indoor67 [ SUN397 ]
scene-PatchNet+average pooling 78.5 63.5
scene-PatchNet+Fisher vector 83.6 69.0
scene-PatchNet+VLAD 83.9 70.1
scene-PatchNet+VSAD 84.9 71.7

a stride of 16 pixels). These SIFT descriptors are square-
rooted and then de-correlated by PCA processing, where
the dimension is reduced from 128 to 80. We compare our
VSAD with traditional encoding methods of VLAD [14]
and Fisher vector [16]. For traditional encoding methods,
we directly learn the codebooks with unsupervised learning
methods (i.e., GMMs, k-means) based on SIFT descriptors,
where the codebook size is set as 256. For our VSAD, we first
resize the extracted patches of training images to 128 x 128.
Then we feed them to the learned object-PatchNet and obtain
their corresponding semantic probabilities p. Based on the
SIFT descriptors f and the semantic probabilities p of these
training patches, we construct our semantic codebook and
VSAD representations by Equation (2) and (6).

The experimental results are reported in Table V. We see
that our VSAD significantly outperforms the traditional
VLAD and Fisher vector methods on both datasets of MIT
Indoor67 and SUN397. Meanwhile, we also list the perfor-
mance of VLAD and Fisher vector with multi-scale sampled
SIFT descriptors from previous works [23], [63]. Our VSAD
from single-scale sampled patches is still better than the
performance of traditional methods with multi-scale sampled
patches, which demonstrates the advantages of semantic code-
book and VSAD representations.

2) Performance With Scene-PatchNet Descriptors: After
evaluating VSAD representation with SIFT descriptors, we are
ready to demonstrate the effectiveness of our complete frame-
work, i.e. describing and aggregating local patches with
PatchNet. According to previous study, we choose the multi-
scale dense sampling method (9 scales) to extract patches. For
each patch, we extract the scene-PatchNet descriptor f and use
the semantic probabilities p obtained from object-PatchNet to
aggregate these descriptors.

We make comparison among the performance of VSAD,
Average Pooling, Fisher vector, and VLAD. For fair compari-
son, we fix the dimension of PatchNet descriptor as 1,024 for
all encoding methods, but de-correlate different dimensions to
make GMM training easier. The numerical results are summa-
rized in Table VI and our VSAD encoding method achieves the
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TABLE VII

PERFORMANCE COMPARISON WITH CONCATENATED DESCRIPTOR
(HYBRID-PatchNet) FROM OBJECT-PatchNet AND
SCENE-PatchNet ON THE DATASETS OF
MIT INDOOR67 AND SUN397

[ Method [ MIT indoor67 | SUN397 |
hybrid-PatchNet+average pooling 80.6 65.7
hybrid-PatchNet+Fisher vector 82.6 68.4
hybrid-PatchNet+VLAD 84.9 70.9
hybrid-PatchNet+VSAD 86.1 72.0

best accuracy on both datasets of MIT Indoor67 and SUN397.
Some more detailed results are depicted in Figure 5, where we
show the classification accuracy on a number of scene cate-
gories from the MIT Indoor67 and SUN397. VSAD achieves a
clear performance improvement over other encoding methods.

3) Performance With Hybrid-PatchNet Descriptors: Finally,
to further boost the performance of VSAD representation and
make comparison more fair, we extract two descriptors for
each patch, namely descriptor from scene-PatchNet and object-
PatchNet. We denote this fused descriptor as hybrid-PatchNet
descriptor. For computational efficiency, we first decrease the
dimension of each descriptor to 100 for feature encoding.
Then, we concatenate the image-level representation from two
descriptors as the final representation. As shown in Table VII,
our VSAD encoding still outperforms other encoding methods,
including average pooling, VLAD, Fisher vector, with this
new hybrid-PatchNet descriptor, which further demonstrates
the effectiveness of PatchNet for describing and aggregating
local patches.

Several categories with significant improvement on MIT Indoor67 and SUN397. These results show the strong ability of VSAD encoding for scene

E. Comparison With the State of the Art

After the exploration of different components of our pro-
posed framework, we are ready to present our final scene
recognition method in this subsection and compare its per-
formance with these sate-of-the-art methods. In our final
recognition method, we choose the VSAD representations by
using scene-PatchNet to describe each patch (f) and object-
PatchNet to aggregate these local pathces (p). Furthermore,
we combine our VSAD representation, with Fisher vector
and deep features of Place205-VGGNet-16 [75] to study the
complementarity between them, and achieve the new state of
the art on these two challenging scene recognition benchmarks.

The results are summarized in Table VIII and Table IX,
which show that our VSAD representation outperforms the
previous state-of-the-art method (LS-DHM [40]). Further-
more, we explore the complementary properties of our
VSAD from the following three perspectives. (1) The seman-
tic codebook of our VSAD is generated by our discrim-
inative PatchNet, while the traditional codebook of Fisher
vector (or VLAD) is generated in a generative and unsuper-
vised manner. Hence, we combine our VSAD with Fisher
vector to integrate both discriminative and generative power.
As shown in Table VIII and Table IX, the performance
of this combination further improves the accuracy. (2) Our
VSAD is based on local patches and is complementary to
those global representations of image-level CNN. Hence,
we combine our VSAD and the deep global feature (in the
FC6 layer) of Place205-VGGNet-16 [75] to take advantage
of both patch-level and image-level features. The results
in Table VIII and Table IX show that this combination
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Fig. 6. Analysis of semantic codebook. The codeword (the 1st column) appears in its related scene categories (the 2nd-5th column), which illustrates that

our codebook contains important semantic information.

TABLE VIII

COMPARISON WITH RELATED WORKS ON MIT INDOOR67. NOTE THAT
THE CODEBOOK OF FV AND OUR VSAD ARE ENCODED
BY DEEP FEATURE FROM OUR SCENE-PatchNet

Method | Publication [ Accuracy(%)
Patches+Gist+SP+DPM [64] ECCV2012 49.4
BFO+HOG [65] CVPR2013 58.9
FV+BoP [55] CVPR2013 63.1
FV+PC [66] NIPS2013 68.9
FV(SPM+OPM) [67] CVPR2014 63.5
Zhang et al. [68] TIP2014 39.9
DSFL [69] ECCV2014 522
LCCD+SIFT [70] arXiv2015 66.0
OverFeat+SVM [71] CVPRW2014 69.0
AlexNet fc+VLAD[43] ECCV2014 68.9
DSFL+DeCaf [69] ECCV2014 76.2
DeCaf [72] ICML2014 59.5
DAG+VGG19 [73] ICCV2015 71.5
C-HLSTM [74] arXiv2015 75.7
VGG19 conv5+FV [75] arXiv2015 78.3
Places205-VGGNet-16 [76] arXiv2015 81.2
VGG19 conv5+FV [77] CVPR2015 81.0
Semantic FV [42] CVPR2015 72.9
LS-DHM [40] TIP2017 83.8
Our VSAD - 84.9
Our VSAD+FV - 84.4
Our VSAD+Places205-VGGNet-16 - 85.3
Our VSAD+FV+ Places205-VGGNet-16 - 86.2

surpasses the human performance on SUN 397 dataset. (3)
Finally, we combine our VSAD, Fisher vector, and deep
global feature of Place205-VGGNet-16 to put the state-of-
the-art performance forward with a large margin. To our
best knowledge, the result of this combination in Table VIII
and Table IX is one of the best performance on both MIT
Indoor67 and SUN397, which surpasses human performance
(68.5%) on SUN 397 by 4 percents.

TABLE IX

COMPARISON WITH RELATED WORKS ON SUN397. NOTE THAT THE
CODEBOOK OF FV AND OUR VSAD ARE ENCODED BY DEEP
FEATURE FROM OUR PatchNet. OUR VSAD IN
COMBINATION WITH PLACES205-VGGNet-16
OUTPERFORM STATE-OF-THE-ART AND
SURPASS HUMAN PERFORMANCE

Method | Publication | Accuracy(%)
Xiao et al. [23] CVPR2010 38.0
FV(SIFT+LCS) [16] 1JCV2013 47.2
FV(SPM+OPM) [67] CVPR2014 45.9
LCCD+SIFT [70] arXiv2015 49.7
DeCaf [72] ICML2014 43.8
AlexNet fc+VLAD [43] ECCV2014 52.0
Places-CNN [3] NIPS2014 54.3
Semantic FV [42] CVPR2015 54.4
VGGI19 conv5+FV [75] arXiv2015 59.8
Places205-VGGNet-16 [76] arXiv2015 66.9
LS-DHM [40] TIP2017 67.6
Human performance [23] CVPR2010 68.5
Our VSAD - 71.7
Our VSAD+FV - 72.2
Our VSAD+Places205-VGGNet-16 - 72.5
Our VSAD+FV+ Places205-VGGNet-16 - 73.0

F. Visualization of Semantic Codebook

Finally, we show the importance of object-based seman-
tic codebook in Figure 6. Here we use four objects from
ImageNet (desk, file, slot, washer) as an illustration of the
codewords in our semantic codebook. For each codeword,
we find five scene categories from either MIT Indoor67 or
SUN 397 (the 2nd to 5th column of Figure 6), based on their
semantic conditional probability (more than 0.9) with respect
to this codeword. As shown in Figure 6, the object (codeword)
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appears in its related scene categories, which makes our
codebook contains important semantic cues to improve the
performance of scene recognition.

VII. CONCLUSIONS

In this paper we have designed a patch-level architecture
to model local patches, called as PatchNet, which is trainable
in an end-to-end manner with a weakly supervised setting.
To fully unleash the potential of PatchNet, we proposed a
hybrid visual representation, named as VSAD, by exploiting
PatchNet to both describe and aggregate these local patches,
whose superior performance was verified on two challenging
scene benchmarks: MIT indoor67 and SUN397. The excellent
performance demonstrates the effectiveness of PatchNet for
patch description and aggregation.
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