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Abstract—The two-stream CNNs prove very successful for
video-based action recognition. However, the classical two-stream
CNNs are time costly, mainly due to the bottleneck of calculating
optical flows (OFs). In this paper, we propose a two-stream-
based real-time action recognition approach by using motion
vector (MV) to replace OF. MVs are encoded in video stream
and can be extracted directly without extra calculation. However,
directly training CNN with MVs degrades accuracy severely due
to the noise and the lack of fine details in MVs. In order to relieve
this problem, we propose four training strategies which leverage
the knowledge learned from OF CNN to enhance the accuracy of
MYV CNN. Our insight is that MV and OF share inherent similar
structures which allow us to transfer knowledge from one domain
to another. To fully utilize the knowledge learned in OF domain,
we develop deeply transferred MV CNN. Experimental results on
various datasets show the effectiveness of our training strategies.
Our approach is significantly faster than OF based approaches
and achieves processing speed of 390.7 frames per second,
surpassing real-time requirement. We release our model and code
to facilitate further research.!
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transfer, real-time processing, deep learning.
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I. INTRODUCTION

UMAN action recognition [1]-[5] has been extensively

studied in the recent years, due to its great potential in
real applications like video surveillance, video retrieval, and
human computer interaction. The aim of action recognition
is to automatically classify actions in real world videos effi-
ciently and effectively. In recent years, many methods have
been proposed to boost the classification accuracy. These
algorithms are mainly based on two paradigms: Bag-of-Visual-
Words framework [6] and deep learning [1]. Bag-of-Visual-
Words framework (or its variants) is a stage-wise method,
whose pipeline contains feature extraction, feature encoding,
and classification. One popular method along this line is
the improved-dense-trajectories (iDT) [2] and Fisher Vector
encoding [7]. It uses trajectory-aligned hand-crafted features
to represent action and achieves high accuracy on various
datasets. Unlike these traditional methods, deep learning is an
end-to-end framework. It takes a video as input and employs
multiple-layer neural network as its architecture. The parame-
ters of deep learning method are automatically tuned based on
back propagation algorithm. Two-stream CNN is a success-
ful architecture in this deep learning paradigm. Both RGB
CNN and optical flow CNN are used to extract appearance
and motion representation from videos, respectively. These
representations are used to predict action classes from videos.
Two-stream framework and its variants [8] achieve the state-of-
the-art accuracy on several large datasets like UCF101 [9] and
HMDB51 [10]. The existing two-stream frameworks mainly
rely on optical flow extraction to represent motion information.
However the calculation of optical flow is time consuming,
which prohibits the real-time preprocessing of two-stream
based approaches even with GPU.

The main objective of this paper is to develop a real-
time action recognition approach with high performance and
accuracy. We utilize the successful two-stream framework [1]
as our basic architecture. It is non-trivial to speed up per-
formance while still keep the recognition accuracy of two-
stream CNNs, because it requires optical flow as its input.
Only performing prediction with RGB image leads to inferior
recognition accuracy. However the calculation of optical flow
is computationally expensive, for example it can only be
conducted at the speed of 16.7 frames per second (fps) with
K40 GPU [11], which is a bottleneck for real-time processing.
To circumvent this problem, in this paper, motion vector as
the input of CNN is introduced. Motion vector is encoded
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Fig. 1.

Comparison of motion vector and optical flow in x and y components. We can see that motion vector contains lots of noisy movement information

and it is much coarser than optical flow. It is clearly that the structures of bow and arrow are lost and the outline of human is blurred.

in the video stream during video compression phrase and
can be directly extracted almost with no extra computational
overhead.

Motion vector [12] is originally proposed for video coding.
It is designed to exploit the motion information of correspond-
ing image blocks to reduce the bit rate of video. Reference [13]
shows that motion vector can be used for action recognition.
Similar to optical flow, motion vector contains local motion
information. However, as it is not designed to reveal the
motion as accurate as possible, motion vector contains noisy
and imprecise movement information as shown in Fig. 1.
Directly using motion vector as input can degrade the accuracy
severely.

To solve the possible issue of accuracy drop, our key
idea in this paper is to transfer the knowledge from optical
flow CNN to motion vector CNN to improve its general-
ization ability. Compared with optical flow images, motion
vector images contain similar movement information. The
main difference lies in the quality of motion. Motion vector
contains coarse and noisy movement pattern, while optical
flow contains more precise and clear one. Due to the high
quality of optical flow images, optical flow CNN can learn
elaborate and concise filters, while motion vector CNN only
learn noisy filters which harms its recognition accuracy. This
fact inspires us that the knowledge learned by optical flow
CNN may be beneficial to motion vector CNN. To fully
unleash the potential of motion vector CNN, we design
an algorithm, called deeply-connected transfer, to perform
multi-layer knowledge transfer from optical flow CNN to
motion vector CNN. It should be noted that optical flows
are only used during training phrase for knowledge trans-
fer. For testing, only motion vectors are used for real time
action recognition. Experiments show that deeply-transferred
motion vector CNN obtains a significant accuracy improve-
ment over directly using motion vector as input, while still
keeps the good merit for real-time processing speed of motion
vectors.

The preliminary version is published in CVPR 2016 [14]
and we have extended it in two important ways. First, we pro-
pose a new training strategy to improve motion vector CNN’s
accuracy. Second, more extensive experiments are performed
to verify the effectiveness of our new approach. In particular,
we observe that the learning strategies proposed in [14] are
kinds of shallow supervision. During training, optical flow
CNN’s knowledge is only presented to the final layer of
motion vector net. The knowledge that contained in middle
layers of optical flow CNN is not directly exploited. In this
paper, a new method called “Deeply Connected Transfer”
is proposed to enable knowledge transfer between middle lay-
ers. Furthermore, extensive experiments are performed on the
UCF101 [9], HMDB51 [10], and THUMOS14 [15] datasets.
These results verify that our newly proposed method can
provide stronger supervision than [14] and further improve
the accuracy of motion vector CNN.

II. RELATED WORK

Recent years have witnessed significant progress for action
recognition. State-of-the-art methods can be roughly divided
into two frameworks: the Bag-of-Visual-Words (BoVW) par-
adigm and deep learning approach.

BoVW framework is originally proposed for image classi-
fication [16]. Further researches show its potential for video
retrieval [6] and action recognition [2]. Typical BoVW frame-
work consists of three steps: feature extraction, feature encod-
ing, and classification. For feature extraction, Laptev [17]
explored the spatial-temporal domain by extending harris
corner detector to 3D. Wang et al. [18] evaluated different
combinations of detectors and descriptors, and showed that
dense feature extraction can exhibit better accuracy than salient
point based approach. Wang et al. [19] further extended
this idea by utilizing optical flow to track dense feature
points in several continuous frames and employed several
descriptors to extract feature along optical flow trajectories.
Wang and Schmid [2] discovered that camera motion can
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hamper accuracy for action recognition and exploited camera
motion elimination method to further improve the accuracy.
Popular descriptors for action recognition include HOG [20],
HOF [17], MBH [21], and the recently proposed TDD [5].
Unlike the previous hand-crafted features [17], [20], [21],
TDD utilized deep neural network to extract features along
trajectories and showed significant improvement on vari-
ous datasets. For descriptor encoding, hard quantization [6],
VLAD [22] and Fisher Vector [7] are among the popular
methods for action recognition. Peng er al. [23] conducted
extensive experiments on various datasets to give practical
advice on how to choose the optimal setup of feature encoding
for action recognition.

Recent studies demonstrated that deep learning approaches
can achieve superior accuracy on image classification [24]
and object detection [25], which inspires researchers to utilize
CNN for action recognition task. Different from image classi-
fication, video based action recognition is in spatial-temporal
domain, where motion information yields an important cue.
One research line is to exploit contiguous frame relationship
by stacking RGB images. Karpathy et al. [26] first used
CNN on stacked RGB images to learn motion patterns, and
designed several temporal pooling method. Tran et al. [4]
proposed to use 3D convolution to directly extract motion
relation in stacked RGB images, and showed good speed and
accuracy on various datasets. Wang et al. [27] proposed a
new module, called as SMART, to directly model appearance
and relation from RGB images in an explicit and separate
way. Another research line is based on optical flow. Optical
flow can directly unveil motion information by calculating the
movement of corresponding points. One successful approach
in this line is two-stream CNNs [1], where a two-stream net
was developed to exploit appearance information and motion
relation in RGB CNN and optical flow CNN, respectively.
Two-stream CNN framework is used as a baseline for our
study as it achieves high recognition accuracy. Wang ef al. [8]
improved two stream framework by using temporal seg-
ments of video to train multiple snippet-level CNNs,
which achieves state-of-the-art accuracy on several datasets.
Feichtenhofer et al. [28] explored the fusion strategies of
RGB CNN and optical flow CNN, which showed high accu-
racy on action recognition. Feichtenhofer et al. [29] proposed
ST-ResNet by combining ResNet [25] with two-stream con-
vnets. ST-ResNet achieved impressive results on UCF101 and
HMDBS|1 datasets. Ng et al. [30] introduced recurrent neural
network (LSTM) to further exploit motion patterns in optical
flow images. Wu ef al. [31] combined the merits of two-
stream CNNs and LSTMs by fusing RGB net and optical flow
net with a recurrent architecture.

Despite of improving accuracy, several approaches were
proposed to accelerate the processing speed of deep neural
networks. Knowledge distillation method [32] was proposed
to compress cumbersome net. Courbariaux and Bengio [33]
discovered that float computation in neural network is time
consuming and binary number can be efficiently calculated
by shift operations. Courbariaux and Bengio [33] proposed to
binarize the activation of feed forward processing to accelerate
neural network computation. Rastegari er al. [34] further
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extended this idea by proposing XNOR-Net to achieve high
accuracy on ImageNet datasets.

Several researches also aimed to improve processing speed
of traditional methods on action recognition. For exam-
ple, Kantorov and Laptev [13] accelerated dense trajectory
method [19] by employing motion vector to replace optical
flow. Kantorov and Laptev [13] further used FLANN to sub-
stitute brute force search in Fisher Vector [7] and VLAD [22]
to improves the speed.

Another thread of researches focused on leveraging priv-
ileged knowledge provided by teacher model to improve
student model’s performance. Vapnik and Izmailov [35] pro-
vided detailed investigations on two topics in learning using
privileged information (LUPI): similarity control in LUPI
paradigm and transfer knowledge from privileged knowledge
space to decision space. They proposed SVM+ to implement
LUPI algorithm. Lapin et al. [36] showed the close rela-
tionship between weighted SVM and privileged information.
Further, Lopez-Paz et al. [37] unified two style of knowledge
transfer, privileged information and knowledge distillation,
into generalized distillation. They showed that distillation and
privileged information can improve the results with respect
to pure supervised learning. Li et al. [38] proposed sparse
multi-instance learning using privileged information (sMIL-PI)
approach. sMIL-PI leverages textual features from tags and
captions of web images as privileged knowledge to tackle
noisy labeling problem in training data. Their work showed
that using privileged information can improve the perfor-
mance of image retrieval and image categorization tasks.
Niu et al. [39] showed that sMIL-PI can also achieve promis-
ing results for action recognition. The idea proposed in our
work that using teacher network to improve student net’s
performance is similar to LUPI paradigm. However, unlike
LUPI which is based on SVM framework, our approach
implements knowledge transfer in deep learning domain.

Among these approaches, the most relevant works to us
are [13], [40], and [32]. Unlike [13], we use motion vector
to improve speed in the deep learning framework. It is non-
trivial to train a high accuracy network with motion vec-
tor. Our work is also related to knowledge distillation [32]
in spirit. Unlike [32], however, our aim is not to trans-
fer knowledge in the same domain between two different
structures but to transfer knowledge between two different
domains with the same structure. We further design several
strategies to enhance knowledge transfer from optical flow
domain to motion vectors. Unlike [40] that only using the
output of one layer as supervision signal, we fully utilize
the multiple middle representations to provide deeply knowl-
edge transfer. The soft labels of teacher networks have been
also employed in other computer vision tasks for different
objectives, such as class disambiguation in large-scale scene
recognition [41] and knowledge transfer in CNN fine tuning
for event recognition [42].

III. MOTION VECTOR FOR DEEP ACTION RECOGNITION

Two-stream CNNs [1] consists of two parts, RGB CNN
and optical flow CNN, to achieve state-of-the-art accuracy on
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various datasets. RGB CNN can be conducted in short time
with GPU. However, the optical flow part is computational
expensive and cannot satisfy real-time preprocessing require-
ment. Optical flow CNNs take frames of optical flow as input.
It first needs to extract optical flow images from video. Then
these images are processed with a CNN. Although the feed
forward process of CNNs can be conducted at fast speed
(around 300ms for 250 frames with center crop) with GPU,
the extraction of optical flow is relatively slow. For example,
with Farneback’s method [43], calculating optical flow needs
360ms per frame on CPU with efficient implementation.
Even with GPU, optical flow (Brox’s flow [11]) can only
be extracted around 60ms per frame, which is still far from
the requirement of real-time processing. Thus, the calculation
of optical flow is one of the main bottlenecks that lower the
processing speed of two-stream CNNS.

As the optical flow CNN is an important part and has
a large contribution to the accuracy of two-stream CNNSs.
Directly processing video with only RGB CNN degrades the
recognition accuracy severely. Here, we follow the two-stream
architecture and propose motion vector CNNs to extract the
motion pattern of videos, instead of using the computationally
expensive optical flows.

Motion vector is similar to optical flow. Both are two-
dimension vectors to describe the movement information of
corresponding pixels in two continuous frames. Unlike optical
flow, motion vector is widely used in various video coding
standards (H.264 [12], HEVC [44] and etc.). It is available in
compressed video stream and can be obtained directly with
almost no computational cost. This property makes motion
vector an attractive substitution for optical flow to achieve
efficient action analysis. Early work [13] had demonstrated
the usefulness of motion vector for action recognition. They
purposed to use motion vector to form trajectories and then
used VLAD and Fisher vector with efficient implementation
to describe videos for action classification. Different to this
work, we explore motion vector in deep neural network
framework. The main difficulty comes from the noise and the
block-wise imprecise motion information exhibited by motion
vector images. As shown in our experiments, directly training
CNN with motion vectors from scratch will largely harm the
recognition accuracy.

To tackle this problem, several training methods are pro-
posed to transfer the knowledge learned by optical flow CNN
to motion vector CNN. Here, our insight is that both motion
vector and optical flow contain the movement information.
Furthermore, the knowledge learned by optical flow CNN and
motion vector CNN are correlated. Since optical flow is more
precise and optical flow CNN can learn more elaborate filters,
we may leverage optical flow CNN as a teacher net to improve
the accuracy of motion vector CNN.

A. Motion Vector

In this subsection, we give a brief description of motion
vector and explain why it is hard to train motion vector CNN
with high accuracy.

Motion vector is originally designed for video coding.
In video coding, the main goal is to reduce the spatial and

2329

temporal redundancy within several continuous frames.
Motion vectors describe the movement information of cor-
responding blocks in two frames, which yields an ideal cue
to exploit the temporal redundancy in two frames. Thus
motion vector is widely implemented in various video coding
standards like H.264, MPEG, HEVC, and etc. For action
recognition, as motion vector is already calculated in video
coding phase and contains motion, it can provide effective
motion information for action recognition with high efficiency.

However, training motion vector CNN with high accuracy
is challenging. Firstly, motion vector only provides block wise
movement information. In video coding, macro block is the
basic coding unit, which has size ranging from 8§ x 8 to 16 x 16.
Different with the pixel level motion information provided by
optical flow, motion vector only yields macro block level infor-
mation. This property causes the coarse structure of motion
vector, as Fig. 1. It also poses difficulty for using motion
vector CNN to learn fine-grained action information, which
further degrades the accuracy of motion vector CNN severely.

Furthermore, motion vectors contain noisy motion informa-
tion, which made it difficult to learn high accuracy motion
vector CNN. As stated before, motion vector needs to meet
the balance between the speed of encoding and the bit rate of
video. It is calculated based on three or four steps of block-
wise comparison. Thus, motion vectors fail to provide precise
motion information. It can be clearly seen from Fig. 1, unlike
the clear background part of optical flow image, noise patterns
exist in motion vector image. This property hampers motion
vector CNN to achieve high accuracy.

Motion vectors may not exist in all frames. It is calculated
based on reference frames. In order to achieve the balance
of video quality and the compression rate, images in video
coding are grouped into group-of-pictures (GOP). One typical
GOP contains intra-coded frame (I-frame), predictive frame
(P-frame), and bi-predictive frame (B-frame). As the name
indicated, I-frame is coded based on itself which indicates
that it contains no motion vector. P-frame and B-frame are
coded based on other reference frames, which means that
they both contain movement information. Empty I-frame poses
difficulties in training high accuracy CNN. Our strategy to
this is to use previous frame’s motion vector to replace empty
I-frame. We find this simple strategy works well in practice.

B. Real-Time Action Recognition Frameworks

The proposed real-time action recognition framework is
shown in Fig. 2. It contains two components: video decoder
and two-stream architecture CNNs. The video decoder takes
compressed video as input and directly gets RGB and motion
vector images during decoding phrase. Then RGB and motion
vector images are fed into two-stream CNNSs to get the action
prediction of this video. The main difference between our
proposed real-time action recognition framework with two-
stream CNNs is that our method doesn’t require optical flow
computation during deploying. Motion vector CNN (MV-
CNN) and RGB CNN are utilized in our framework to extract
high level motion and appearance representations, respectively.
Thus, the most time-consuming part, optical flow calculation,
is avoided in our real-time action recognition framework.
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Fig. 2.

Structure for real-time action recognition system. In spatial and temporal CNN, F stands for kernel size and S means stride step. O represents for

output number and P is pad size. Each time, MV-CNN processes an input by stacking 10 motion vectors, which contains 20 channels in total (10 channels
for x axis and 10 channels for y axis). RGB-CNN processes one RGB image with 3 channels at one time.

In training phase, RGB images and motion vector are firstly
extracted from video. The video’s label is assigned to each
frame. Data augmentation is important for training CNN.
Random cropping and random scale jitter in spatial domain
are employed to get a patch from image and motion vector.

In testing phases, videos are firstly decomposed into raw
images and motion vectors. RGB CNN and MV-CNN are
then employed to take images and motion vectors as input.
The final action prediction of video is determined by the
weighted average of two CNN'’s prediction scores. Weights are
set as 1 and 2 for spatial CNN and temporal CNN respectively.

For fair comparison with two stream CNNs [1],
ClarifaiNet [1] is used as the basic architecture for spatial
and temporal CNN. Following [1] and [45], dropout ratios are
set to 0.5 for spatial net to avoid over-fitting. For temporal
net, dropout ratios are set to 0.9 and 0.8 for FC6 and
FC7 respectively. Our spatial net is pre-trained on ImageNet
ILSVRC-2012 dataset and then fine-tuned on action dataset.
The learning rate for spatial net is firstly set to 1073 and then
drop to 10™* after 14k iterations. The whole training process
terminates at 20k steps. As HMDBS51 dataset is relatively
smaller than UCF101 and THUMOS14 dataset is larger than
UCF101, we stops the training process at 10k steps and 50k
steps, respectively.

For temporal net, we slightly modify the ReLU layers of
original ClarifaiNet to PReL.U layers, as it leads to better
results and accelerates convergence. 10 frames of motion
vectors is stacked as input for temporal net. Learning rate for
temporal CNN starts from 1072 and then decreases to 1073
after 30k iterations. Learning rate further drops to 10~ at
70k steps. The training stops at 90k iterations.

IV. DEEPLY-TRANSFERRED MOTION VECTOR CNNS

As motion vectors only contain block level details, and
suffer from noisy and imprecise motion information. It is

challenging to train motion vector CNN with high accu-
racy. Experiments show that directly using motion vector
to replace optical flow will lead to 7%, 10% and 26%
accuracy degradation on UCF101 splitl, HMDB splitl and
THUMOS14 datasets, respectively. Our aim is to achieve
the real-time processing merit of motion vector as well the
high recognition accuracy as optical flow. Although motion
vector and optical flow are calculated in different domains,
they both contain similar motion information. Inspired by this
fact, we design several methods to leverage the rich and fine-
grained features that learned by optical flow CNN to improve
motion vector CNN. These methods can be seen as transfer
the knowledge learned in optical domain flow to that in motion
vector domain. For training, as in Fig. 3(b), optical flow CNN
is employed as teacher network to transfer knowledge to the
student network: motion vector CNN. For the testing phrase,
only motion vector CNN is used as temporal net to process the
video. Optical flow images and optical flow CNN need not be
calculated in testing. Thus, in testing, our proposed knowledge
transfer strategy will not influence the testing speed of our
action recognition system.

To implement the idea described above, four different
strategies are proposed to transfer knowledge from OF-CNN
to MV-CNN. We first introduce several notations. For teacher
net in optical flow domain, the parameters are defined as

= (T}, sz, s T;}, where TI;’ stands for parameters of
the n-th layer of teacher network and n represents the total
number of layers. Parameters for student net in motion vector
domain are denoted by §, = {Sll,, Slz,, s SZ}. For simplicity,
we assume that the motion vector CNN has the same structure
as optical flow CNN. Our method can also be extended to other
structures.

A. Teacher Initialization

Extensive works [1], [8], [46] in image and action clas-
sification show that initializing network with a pre-trained
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Structure of Teacher Initialization, Supervision Transfer, and their combination. Blue dash lines represent copying the initial weights from teacher

net to student net. Green lines are the backward propagation path. Blue full lines mean feed forward paths of teacher flow. Orange lines are feed forward
paths of student net. (a) Strategy A: teacher initialization. (b) Strategy B: Supervision transfer. (c) Strategy C: Combination.

model on ImageNet can improve the accuracy and accelerate
convergence. This fact inspires us to find an appropriate pre-
trained model for motion vector CNN. Although motion vector
and optical flow are from different domains, they are inherently
correlated as they both contain similar motion information
of local patches. Thus, optical flow CNN is used as a pre-
trained model for motion vector CNNs. More specifically,
shown in Fig. 3(a), we use optical flow CNN (OF-CNN) to
initialize the parameters of motion vector CNN (MV-CNN),

S;:T;, t=1,...,n. (1)

Then, motion vector images are used to fine-tune motion
vector CNN until convergence. Teacher initialization strategy
directly provides MV-CNN a good start point for training with
knowledge of detailed motion information. It can be seen as
MV-CNN starts to train on fine optical flow features and then
learns by itself.

For implementation details, we first set the learning rate
as 1073, and then decrease it to 10~* and 10~ at 30k and
70k steps respectively. The training stops at 90k iterations.

B. Supervision Transfer

Teacher initialization provides student network a good start-
ing point for training with pre-learned network parameters.
However, teacher network is not involved in training process.
Student network MV-CNN is only trained with motion vector
samples. As the inaccurate and coarse nature of motion
vectors, the fine motion features provided by the teacher ini-
tialization may be diminished during the fine-tuning process.
To tackle this problem, as in Fig. 3 (b), we propose to include
additional supervision signal by using both ground truth label
and teacher network to teach student net during training. Thus,
MV-CNN can learn from OF-CNN during the whole training
process. Here the last full connection layer of OF-CNN is
employed as a new supervision signal for MV-CNN.

The technique in supervision transfer is similar to
Hinton ef al.’s [32] work on dark knowledge. However our
aims are different. Hinton’s work mainly focuses on how
to compress a large network to a small one with similar
accuracy. Inputs of two networks are in the same domain.
But the structures for cumbersome network and small network
are different. In our problem, the input for teacher and student

net are different (optical flow vs. motion vector). The main
barrier needs to be tackled is how to improve the accuracy
of student net with low quality input. Thus, we do not need
to compress a network. Our aim is to use teacher network to
improve the accuracy of the student with the same structure.

For a given frame I, the optical flow and motion vector
are defined as o and v respectively. The output of the last
fully connected (FC) layer of teacher CNN and student CNN
are calculated as: T"(0) = softmax(7""!(0)), and §"(v) =
softmax(S"~!(v)), respectively, where ‘softmax’ function is
employed to generate a probability score of multiple classes
from the FC feature.

For transferring knowledge from OF-CNN to MV-CNN,
the difference between student’s and teacher’s output
need to be measured. Inspired by Hinton et al’s [32],
a teacher supervision loss function is introduced. We utilize a
temperature parameter Temp to soften both teacher’s and stu-
dent’s output to ease the learning difficulty. The softmax output
of teacher net is softened as Pr = softmax(7"~'/Temp),
Similarly, the student net’s softmax output is defined as
Ps = softmax(S"~!/Temp), we use cross-entropy function
to define the teacher supervision loss (TSL):

k
Lrsr = _ZPT(i)log Ps (i), 2
i=1
where k is the dimension of student and teacher’s output
(number of categories).

In spite of teacher supervision loss, the cross entropy
between student’s output S” and the ground truth Q is still
needed to be minimized. Thus, the ground truth loss (GT) is
defined by,

Lor =— > 1[Q = i]log §"(i), 3)

where S” and Q represent the unsoftened student net’s softmax
vectors and the ground truth label respectively.

TSL loss (Eq.2) and GT loss (Eq.3) are combined to form
the final loss:

L=Lrsy+w-Lgr “4)

where w is a weight to balance these two terms. As suggested
in [32], during training, the weight w for TSL and GT loss
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Fig. 4. Structure for Deeply Connected Transfer. Blue lines represent the feed forward process of CNN, while the orange dash line means the back propagation
for DTMV-CNN. It should be noticed that the OF-CNN is only utilized during training and the weight for OF-CNN is frozen.

is set as Temp® to balance gradients of these two losses. The
parameters of teacher network is frozen. Only parameters of
student net is updated by the supervision of teacher net and
ground truth label.

For implementation details, learning rate starts from 1073
and then decays to 10™* at 50k and 107> at 70k steps. The
whole training procedure terminates at 90k iterations.

C. Combination

In third strategy, we want to combine the merits of both
teacher initialization and supervision transfer. For the com-
bination strategy, the teacher’s parameters are firstly copied
to student’s net. Then both teacher supervision loss Eq.2 and
ground truth loss Eq.3 are employed to transfer the knowledge
from OF-CNN to MV-CNN. In this way, the pre-trained model
on optical flow can provide MV-CNN a good start point for
learning. Furthermore, MV-CNN can still receive supervision
from OF-CNN during training by mimicking the output of
OF-CNN.

D. Deeply Connected Transfer

We have introduced three strategies in the above sections,
namely Teacher Initialization, Supervision Transfer, and their
combination. These training methods leverage OF-CNN’s
knowledge to improve MV-CNN’s recognition accuracy. Here,
we argue that these three strategies are still kinds of weak
knowledge transfer from OF-CNN to MV-CNN. For teacher
initialization, knowledge transfer only occurs in the start stage
of training. Then MV-CNN will only rely on ground truth
label to tune its parameters. For supervision transfer, only the
final layer of OF-CNN and MV-CNN is connected. Knowledge
that transferred from OF-CNN to MV-CNN is thus very
limited, which may impede the performance of MV-CNN.
To relieve this shortage, we propose a new strategy, coined
as the Deeply Connected Transfer, to perform knowledge
transfer in mid-level layers. In this deeply connected transfer
approach, we force the feature representation of middle layers

of OF-CNN and MV-CNN to be as similar as possible. The
insight behind this is that in addition to the final FC layer,
middle layers of OF-CNN may also contain useful knowledge
that is worth transferring.

In spite of minimizing the difference between S$”(v) and
T"(0) as small as possible, we hope each layer output of
student net S'(v) can approximate the output of the cor-
responding layer in teacher’s net T?(o), where ¢ represents
the ordinal number of each layer. Unlike in the supervision
transfer situation that the divergence between two softmax
outputs (possibilities) can be measured by cross entropy,
we utilize L2 distance to represent the variance between
two feature maps. Thus, deeply connected transfer can be
seen as a stronger knowledge-transfer strategy than Super-
vision Transfer. The structure of DTMV-CNN is shown
in Figure 4.

L2 loss is utilized to measure the deeply connected super-
vision loss (DCSL). Thus, DCSL can be defined as:

n—1
Lpesr = Y L(S'(0), T'(0)), (5)
1=st
where st and n stand for ordinal number for one middle
layer and the total number of layers respectively. L is the
L2 loss function,

k

1
Ly=1 | 225(0) = T{(0))?, ©)
n=1

where k is the dimension for layer ¢ of student and teacher
net and 7 is the ordinal number for one specific layer.

As each layer of teacher net provides supervision for
student net MV-CNN, deeply connected supervision transfer
strategy can fully unleash the supervision ability of teacher
net OF-CNN.

For implementation details, we set learning rate to 1073,
The learning rate is reduced to 10™* and 107> after 50k and
70k iterations respectively. We terminate the learning process
at 90k iterations.
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V. EXPERIMENTS

In experiment part, we firstly introduce the datasets used in
our experiments and then analyze the experimental results.

A. Datasets and Evaluation Protocol

Three datasets are employed to evaluate our pro-
posed real-time action recognition algorithm: UCF101 [9],
HMDB51 [10], and THUMOSI14 [15]. UCF101 contains
13,320 videos which are divided into three splits for training
and testing. We follow the standard setup for three splits and
report mean accuracy over three splits.

HMDBS51 dataset is among the largest dataset for action
recognition. It contains around 7,000 video clips. These clips
are split into three sub-datasets. Each contains 3,570 and
1,530 clips for training and testing, respectively. The standard
setup for HMDBS51 is used and mean accuracies over three
splits are reported.

THUMOSI14 is a dataset with untrimmed videos. It is
originally proposed for action recognition challenge 2014.
13,320 trimmed videos are for training, while another
1,010 and 1,574 untrimmed videos are for validation and
testing. Untrimmed videos contain lots of irrelevant frames
that make it more challenging in training and testing CNNss.
Following [47], both training set and validation set are used
for training. We use the official evaluation tool to evaluate
performance. According to the standard setup of this dataset,
mean Average Precision (mAP) is reported.

For the speed evaluation, the speed is reported as frames
per second (fps) on a CPU (E5-2640 v3) and a K40 GPU.

B. Implementation Details

Three data augmentation strategies are used to learn robust
CNN features. A 224 x 224 patch is randomly cropped from
training image set. And then random horizontally flipping is
implemented to augment training data. Furthermore, follow-
ing [45], a scale jittering strategy is implemented to help CNN
to learn robust features. We set scale ratio for 1, 0.875, and
0.75 to yield a patch of size for 256, 224 and 192, respectively.
Then these patches are resized to 224 x 224. In testing phase,
one 224 x 224 patch cropped from the center of input image
are used for evaluation. No data augmentation strategy is used
in testing phase.

As HMDBS is relatively small compared with UCF101 and
THUMOS14, we use multi-task learning strategy to train
temporal model on HMDB51. Following [1], a CNN is
modified to have two separated input layers and two output
layers. One is for UCF101 to calculate the loss with ground
truth label, while the other is for HMDB51. Furthermore,
as the motion vector for the original video in HMDBS51 is
relatively noisy, we follow [13] to first use ffmpeg to re-encode
videos and then extract motion vectors. For other datasets
like UCF101 and THUMOSI14, we directly extract motion
vectors from the original version of videos. Our teacher CNN
is trained on TV-L1 optical flow [48] with data augmentation
that achieves 81.6% on UCF101 Splitl, comparable with the

Zhttps://github.com/yjxiong/caffe
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TABLE I

ACCURACY OF DIFFERENT CONNECTION STRATEGY
FOR DTMV-CNN oN UCF101 SpLIT1

Connection strategy [ Accuracy

FC7-FC8 79.3%
FC6-FC38 79.5%
Conv5-FC8 80.0%
Conv4-FC8 80.0%
Conv3-FC8 80.3%
Conv2-FC8 80.1%

accuracy in the original paper 81.2% [1]. For HMDBS51 splitl,
our teacher CNN achieves 60.0%, which is better than 55.4%
on the original two-stream implementation [1]. This significant
improvement can be ascribed to the scale jittering strategy.

C. Parameter Sensitivity

We first analyze the parameters for Supervision Transfer
method. There are two important parameters existing in Super-
vision Transfer: temperature 7emp and weight w for soft
target. As suggested in [32], soft target weights are set as
w = Temp? to balance the gradients between two targets.
We set temperature Temp to 1, 2, and 3 and evaluate them on
UCF101 splitl. Thus the corresponding soft target weight w is
set as 1, 4 and 9. As temperature goes up from 1 to 2, the cor-
responding accuracy grows up from 79.1% to 79.2%. The
accuracy slightly degrade to 79.0% if we set temperature as 3.
We can find that accuracies between different temperatures are
relatively close, which implies Supervision Transfer strategy
is robust for temperature setting. As Temp = 2 achieves the
best accuracy, we set temperature and weight to 2 and 4 for
the following experiment.

Second, we evaluate the accuracy of Deeply Connected
Transfer methods and conduct experiments to analyze which
layers should be connected for knowledge transfer. Greedy
search method is employed to identify the best connection
strategy for deeply-transferred motion vector (DTMV). For
DTMYV, Supervision Transfer and Teacher Initialization are
always used. Thus FCS is connected to TSL loss. Connection
for DTMV starts from FC7 layer. The greedy search will be
stopped if current connection strategy gets worse accuracy than
previous strategy. From Table I, we can observe that the accu-
racy goes up from 79.3% to 80.3% by connecting FC7 layer
to Conv3 layer. As Conv2-FC8 performs slightly worse than
Conv3-FC8, we set connection strategy to Conv3-FC8 for
further experiments.

For HMDBS51 and THUMOS14, we use the same tempera-
ture and connection strategy setting as UCF101.

D. Evaluation of MV-CNNs, EMV-CNNs and DTMV-CNNs

This subsection compares and analyzes different knowledge
transfer strategies through experiments on UCF101, HMDBS1,
and THUMOSI14. The results are summarized in Table II,
Table III, and Table IV. We re-implement two-stream CNNs
on this dataset, as Simonyan and Zisserman [1] did not provide
results on THUMOS14.
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TABLE II

COMPARISON OF TEMPORAL CNN ACCURACY FOR OPTICAL
FLOW BASED APPROACH AND MOTION VECTOR BASED
METHOD ON UCF101 (SpLIT1). DC REPRESENTS
DEEPLY CONNECTED SUPERVISION TRANSFER,

ST STANDS FOR SUPERVISION TRANSFER
AND TI MEANS TEACHER INITIALIZATION

Temporal CNN [ Accuracy
OF-CNN [1] (10 crops) 81.2%
MV-CNN trained from scratch (10 crops) 74.4%
EMV-CNN with ST (10 crops) 77.5%
EMV-CNN with TI (10 crops) 78.2%
EMV-CNN with ST+TI (10 crops) 79.3%
DTMV-CNN with TI+DC (10 crops) 81.0%
DTMV-CNN with ST+TI+DC (10 crops) 80.7%
DTMV-CNN with TI+DC (center crop) 80.3%
DTMV-CNN with ST+TI+DC (center crop) 80.3%

TABLE III

COMPARISON OF TEMPORAL CNN ACCURACY FOR OPTICAL
FLOW BASED APPROACH AND MOTION VECTOR BASED
METHOD ON HMDBS51 (SpLIT1)

Temporal CNN [ Accuracy
OF-CNN [1] 55.4%
OF-CNN (Our reimplementation) 60.0%
MV-CNN trained from scratch 45.8%
EMV-CNN with ST+TI 51.2%
DTMV-CNN with ST+TI+DC 53.0%

TABLE IV

ACCURACY OF DTMV-CNNS, EMV-CNNS AND MV-CNNs
ON THUMOS 14 DATASET. WE ALSO REPORT THE
RESULTS OF TWO-STREAM CNNS

CNN [ MAP
RGB CNN 57.7%
OF-CNN 55.3%
RGB CNN+OF-CNN 66.1%
MV-CNN 29.8%
EMV-CNN 41.6%
DTMV-CNN 43.6%
RGB CNN+MV-CNN 58.7%
RGB CNN+EMV-CNN | 61.5%
RGB CNN+DTMV-CNN | 62.1%

First, comparing the accuracy of MV-CNN trained from
scratch and OF-CNN, we can observe that directly replac-
ing optical flow with motion vector severely degrades the
temporal net’s accuracy by around 7%, 10% and 25% on
UCF101 Splitl, HDMBS51 Splitl and THUMOS14, respec-
tively. It verifies the fact that block wise motion structure,
noisy motion blocks and inaccuracy movement information
can severely harm the accuracy of temporal net. Furthermore,
we observe that the accuracy gap between MV-CNN and
OF-CNN is extremely large in THUMOS 14 dataset. As lots of
video in THUMOS 14 is untrimmed, they contains lots of shots
shift and a large number of irrelevant frames which aggravate
the difficulties of training MV-CNN.

Second, we can see a significant improvement from
MV-CNN to DTMV-CNN for around 6%, 8%, and 14% on
UCF101 Splitl, HMDBS51 Splitl, and THUMOS14 respec-
tively, which shows the effectiveness of our proposed deeply
connected transfer method. Directly training MV-CNN with
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ground truth label from scratch lacks elaborate fine-level
motion knowledge. Our proposed method shows that although
motion vector and optical flow are from different domains,
the knowledge of OF-CNN can still be helpful to MV-CNN.

In the next, we study the accuracy of our proposed strategies
on UCF101 Splitl. For fair comparison with the two stream
ConvNets [1], we use data augmentation strategies for testing.
Following [1], we use five image crops with the size of
224 x 224 from 4 corners and the center of a image. We feed
forward these crops with their flipped version into CNN.
We average these ten image crops to get the final result of the
image. From Table II, supervised transfer and teacher initial-
ization outperforms MV-CNN for 3.1% and 3.8%, respectively.
Similar to researches in image classification [1], [24], teacher
initialization can improve the accuracy of MV-CNN by provid-
ing fine-grained knowledge through a pre-trained model. Fine-
grained motion knowledge provided by OF-CNN is helpful
for training MV-CNN. Furthermore, combining supervision
transfer and teacher initialization can further improve the
results of teacher initialization about 1.1% on UCF101 Splitl,
which shows that the softened softmax vector provided by
supervision transfer can give richer information than ground
truth label solely. As indicated in [32], the softened output
of teacher net can be seen as a regulator for MV-CNN to
prevent over-fitting. Thus supervision transfer can help to
train better MV-CNN. We observe that deeply-transferred
motion vector (DTMV-CNN) can further boost the results of
EMV-CNN for 1%, 1.8% and 2% on UCF101, HMDBS51,
and THUMOSI14 respectively. It indicates that knowledge
contained in each layer of OF-CNN is useful for MV-CNN to
enhance its generalization ability and only using the final fully
connection layer (FC8) as supervision can not fully utilize
the knowledge of OF-CNN. We noticed that DTMV with
TI4+-DC and STH+TI+DC achieves similar performance. They
all surpass the performance of EMV-CNN, which indicate that,
for knowledge transfer, deeply connected transfer can pro-
vide much stronger supervision to MV-CNN than supervision
transfer.

We also show the accuracy of DTMV-CNN with 10 crops
and the one with center crop on UCF101 Splitl in Table II.
DTMV-CNN with center crop shows similar performance
with the one with 10 crops. Thus in the HMDBS51 and
THUMOS 14 dataset, only one 224 x 224 patch cropped from
the center of input image for testing.

Furthermore, we can observe that combining temporal net
DTMV-CNN and spatial net can outperform MV-CNN with
RGB net. It indicates that the knowledge of DTMV-CNN is
more complementary to spatial net than MV-CNN.

Finally, we analyze each category accuracy of MV-CNNs,
EMV-CNNs and DTMV-CNNs on UCF101 Splitl. According
to the class category in [9], videos in UCF101 can be classified
into 101 different classes. These classes can be categorized
as 4 major categories: Human-Human action, Human-Object
action, Human-Instrument action, and Human-Sports action.
The comparison for accuracy on each category can be seen
from Fig. 6. EMV-CNN shows significant improvement over
MV-CNN by around 4%, 6%, and 4% on categories of Human-
Human action, Human-Object action and Human-Sports
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egory require detail motion information, similar to MV-CNN,
EMV-CNN may still lack knowledge for fine-grained motion.
By using the proposed deeply connected transfer method,
DTMV-CNN further improves the results of EMV-CNN on
categories for Human-Human action and Human-Instrument
action by 2% and 4%, respectively. It shows that the pur-
posed method transfers more knowledge of detail motion to
DTMV-CNN than EMV-CNN.

E. Confusion Matrix for DTMV-CNN

We show the confusion matrix for DTMV-CNN in Fig. 5.
It can be shown that DTMV-CNN performs well in most
videos for Human-Human action category like BandMarching
and HeadMassage. However, DTMV-CNN performs worse in
class BrushingTeeth. For BrushingTeeth , DTMV-CNN miss-
classifies majority of videos into ShavingBeards. It may be
due to the action in BrushingTeeth is similar to the one in
ShavingBeards.

Accuracy
o
o
T

o
IS
T

I I I
Human-Object action Human-Instrument action Human-Sports action
UCF101 split1

Human-Human action

Fig. 6. Performance of MV-CNN, EMV-CNN and DTMV-CNN on four
categories of UCF101 Splitl.

F. Speed Evaluation

We analyze the speed of different components of our
proposed approach. In our implementation, motion vector and
RGB image are extracted with CPU, while GPU is utilized
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TABLE V

SPEED OF EACH COMPONENTS IN REAL-TIME ACTION RECOGNITION
SYSTEM. MV AND RGB STANDS FOR MOTION VECTOR
AND RGB IMAGE EXTRACTION, WHILE CNN MEANS
CONVOLUTIONAL NEURAL NETWORK PROCESSING

MV and RGB | CNN | Total

Dataset (fps) (fps) (fps)

UCF101 675.7 9259 | 390.7

HMDBS51 675.7 925.9 | 390.7

THUMOS14 757.6 925.9 | 403.2
TABLE VI

COMPARISON OF SPEED FOR OPTICAL FLOW FIELDS AND
MOTION VECTORS. MV MEANS MOTION VECTOR

Spatial Brox’s Flow[11] MV
Dataset Resolution (GPU) (fps) (CPU) (fps)
UCF101 320 x 240 16.7 675.7
HMDB51 320 x 240 16.7 675.7
THUMOSI14 | 320 x 180 17.5 757.6
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TABLE VII

COMPARISON OF SPEED AND ACCURACY WITH
STATE-OF-THE-ARTON UCF101

[ Accuracy | FPS

to process the feed forward calculation of RGB CNN and
MV-CNN. As the I/O is related to hardware and operating
system, the computation time reported doesn’t include I/O.
However time for video reading and decompression is still
included in processing time. A volume with 10 frames of
motion vector images and one RGB image is processed at
each time. The speed is measured based on the time cost on
each frame instead of each volume.

First, speeds of each component on UCF101, HMDBS51, and
THUMOS14 are shown in Table V. We evaluate the speeds
for different spatial resolutions. For UCF101 and HMDB5I1,
the spatial resolution is 320 x 240, while THUMOS14’s video
has a resolution of 320 x 180. The calculation of our approach
includes video reading and decoding, extraction for motion
vector and RGB, and CNN processing. Around 57% time is
used for motion vector and RGB image extraction with CPU.
The rest of time is occupied by the feed forward computation
of RGB-CNN and MV-CNN on GPU. As GPU is optimized
for matrix multiplication, feed forward calculating of CNN is
slightly faster than extracting motion vector and RGB images
from video. We can observe that the total processing speed
for UCF101, HMDBS51, and THUMOS14 is 390.7, 390.7 and
403.2 fps, respectively, which is one order faster than real-time
processing requirement (25 fps).

Second, speeds for motion vectors and optical flow (Brox’s
flow) extraction are compared in Table VI. Although the
processing speed of motion vector is slight different under dif-
ferent resolutions, motion vector extraction is almost 40 times
faster than optical flow calculation. Even compared with real-
time requirement (25 fps), extraction of motion vector is
almost 27 times faster. For two-stream CNNs, around 85% of
processing time is occupied by optical flow calculation, which
prohibits the classical two-stream approach to be conducted in
real-time.

G. Comparison With the State of the Art

We compare our proposed method with several state-of-the-
art methods in this subsection. The results are summarized
in Tables VII-IX. SVM is employed in most state-of-the-art

MV+FV (CPU) (re-implement) [13] 78.5% 132.8
C3D (1 net) (GPU) [4] 82.3% 313.9
C3D (3 net) (GPU) [4] 85.2% -

iDT+FV (CPU) [2] 85.9% 2.1

Two-stream CNNs (GPU) [1] 88.0% 14.3
EMV+RGB-CNN (GPU) [14] 86.4% 390.7
TSN (GPU) [8] 94.0% < 25
DTMV+RGB-CNN 87.5% 390.7

TABLE VIII

COMPARISON OF SPEED AND ACCURACY WITH
STATE-OF-THE-ART ON HMDBS51

[ Accuracy | FPS

MV+FV (CPU) [13] 46.7% 101.0
MV+VLAD (CPU) [13] 46.3% 227.8
iDT+FV (CPU) [2] 57.2% 2.1

Two-stream CNNs (GPU) [1] 59.4% 14.3
TSN (GPU) [8] 68.5% < 25
DTMV+RGB-CNN 55.3% 390.7

TABLE IX

COMPARISON OF SPEED AND ACCURACY WITH
STATE-OF-THE-ART ON THUMOS 14

[ Accuracy | FPS

Objects (GPU) [47] 44.7% -
iDT+CNN (CPU+GPU) [49] 62.0% < 2.38
Motion (iDT+FV) (CPU) [47] 63.1% 2.38
Objects+Motion (CPU+GPU) [47] 71.6% < 2.38
UntrimmedNet (GPU) [50] 82.2% < 25
TSN (GPU) [51] 80.1% < 25
EMV+RGB-CNN (GPU) [14] 61.5% 403.2
DTMV+RGB-CNN 62.1% 403.2

approaches [1], [2], [13] for classification. Different to these
step-wise methods, our proposed real-time action recognition
method is an end-to-end approach.

First, speed and accuracy performance on UCF101 (3 Splits)
are analyzed. As Kantorov and Laptev [13] did not report
accuracy on this dataset, we re-implement their methods using
the public code offered by Kantorov and Laptev [13]. From
Table VII, we can observe that DTMV+RGB-CNN is around
3 times faster than previous action recognition research on
motion vector [13]. Although it may not be a fair comparison
as MV+FV only uses CPU, DTMV+RGB-CNN still outper-
forms MV+FV for 9%. Compared with optical flow based
approaches [1], [2], [8], our approach is 180 times, 27 times,
and 16 times faster than iDT-+FYV, classical Two-stream CNNSs,
and TSN respectively. Our approach also achieves higher
performance than iDT+FV and achieves similar performance
with Two-stream CNNs. Although TSN achieves impressive
results on UCF101 dataset, it is based on optical flow. Thus,
TSN cannot be conducted in real time. We also compare
our approach with RGB-based algorithm [4]. Our approach
achieves better accuracy and faster processing speed than C3D
(1 net) and C3D (3 net).

Second, we compare the performance on HMDBS5I1
(3 Splits). Our method significantly outperforms other motion
vector based algorithm [13] by around 9%. At the same
time, our approach is 100 fps faster than MV+VLAD.
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Fig. 7.
and OF-CNN. From top to down: MV-CNN, DTMV-CNN, and OF-CNN. (b) Filters on vertical components of Conv1 layer for MV-CNN, DTMV-CNN, and
OF-CNN. From top to down: MV-CNN, DTMV-CNN, and OF-CNN.

Compared with optical flow performance, our approach shows
slightly worse accuracy than iDT [2] and classical two-
stream CNNs [1]. TSN achieves superior performance than us.
However, as these methods requires optical flow as input, our
method is around 300 fps much faster than iDT, two-stream
CNNs, and TSN.

Finally, results on THUMOS14 dataset (Table IX) are
compared. Our approach achieves better performance than
RGB based approach (Objects) [47] by 18%. For optical flow
based approach, DTMV+RGB-CNN is slightly better than
iDT+CNN and shows comparable performance with iDT+FV,
but exhibits worse result than Objects+Motion. However,
as Objects+Motion and iDT+FV need to calculate optical
flow, even with efficient implementation, optical flow based
approach is one order slower than real-time requirement. Our
method is around 16 times faster than real-time processing
(25 fps) and exhibits 200 times quicker than optical flow based
algorithm [11].

H. Visualization of Filters

To verify the effectiveness of our proposed training strat-
egy, filters of both horizontal and vertical components of
the first layer (Convl) for MV-CNN, DTMV-CNN, and OF-
CNN are visualized in Fig. 7. As analyzed before, motion
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Filters for Convl layer of MV-CNN, DTMV-CNN, and OF-CNN. (a) Filters on horizontal components of Convl layer for MV-CNN, DTMV-CNN,

vector lacks fine-grained motion information and contains
imprecise motion blocks. We can clearly observe that filters for
MV-CNN are much coarser than those of OF-CNN and exhibit
more noisy part. On the other hand, filters of OF-CNN
show clear and smooth boundaries which are more suitable
for extracting effective features from videos. We hope that
the knowledge of OF-CNN can be transferred to MV-CNN.
However, due to the coarse nature of motion vector, the fine
features learned by OF-CNN can not be directly applied
into MV-CNN. Thus, at the same time, we also hope that
MV-CNN can benefit the knowledge from both optical
flow domain and motion vector domain. From the filters
of DTMV-CNN, we can observe that the filters are smoother
than those in MV-CNN but still contain certain coarse struc-
tures which are learned from motion vector. This indicates
that our proposed method can transfer OF-CNN knowledge
to DTMV-CNN. Our experimental results on various datasets
also verify that our training strategies help to enhance motion
vector CNN with better generalization abilities.

VI. CONCLUSION

In this paper, motion vector CNN has been proposed to
accelerate the processing speed of deep learning approach for
action recognition. As motion vectors are already encoded
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in video stream, it can be directly extracted without extra
computation. However, as motion vectors only contain block
level and inaccurate motion information, directly training
CNN from scratch with motion vector severally degrades
the action recognition performance. To tackle this problem,
DTMV-CNN is proposed to enable knowledge transfer from
optical flow domain to motion vector domain. Performance of
DTMV-CNN on three challenging datasets verify the effective-
ness of our training approach which shows significantly better
performance than MV-CNN trained from scratch. Further-
more, our proposed real-time action recognition approach is
around 16 times faster than real-time requirement and achieves
391 fps, 391 fps, and 403 fps on UCF101, HMDBS51 and
THUMOS2014 with high performance.
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